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Conversion Factors

SI to Inch/Pound

Multiply By To obtain
Length
centimeter (cm) 0.3937 inch (in)
millimeter (mm) 0.03937 inch (in)
meter (m) 3.281 foot (ft)
kilometer (km) 0.6214 mile (mi)
Area
square centimeter (cm?) 0.001076 square foot (ft?)
square meter (m?) 10.76 square foot (ft?)
square centimeter (cm?) 0.1550 square inch (ft?)
square kilometer (km?) 0.3861 square mile (mi?)
Volume
liter (L) 0.2642 gallon (gal)
Mass
gram (g) 0.03527 ounce, avoirdupois (0z)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:
°F=(1.8x°C)+32

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:
°C=(°F-32)/1.8

Vertical coordinate information is referenced to the North American Vertical Datum of 1988
(NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983
(NAD 83).

Elevation, as used in this report, refers to distance above the vertical datum.
Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (uS/cm at 25 °C).

Concentrations of chemical constituents in water are given either in milligrams per liter (mg/L) or
micrograms per liter (pg/L).






Arsenic Concentrations, Related Environmental Factors,
and the Predicted Probability of Elevated Arsenic in

Groundwater in Pennsylvania

By Eliza L. Gross and Dennis J. Low

Abstract

Analytical results for arsenic in water samples from
5,023 wells obtained during 1969-2007 across Pennsylvania
were compiled and related to other associated groundwater-
quality and environmental factors and used to predict the prob-
ability of elevated arsenic concentrations, defined as greater
than or equal to 4.0 micrograms per liter (ug/L), in ground-
water. Arsenic concentrations of 4.0 pg/L or greater (elevated
concentrations) were detected in 18 percent of samples across
Pennsylvania; 8 percent of samples had concentrations that
equaled or exceeded the U.S. Environmental Protection Agen-
cy’s drinking-water maximum contaminant level of 10.0 pg/L.
The highest arsenic concentration was 490.0 pg/L.

Comparison of arsenic concentrations in Pennsylvania
groundwater by physiographic province indicates that the Cen-
tral Lowland physiographic province had the highest median
arsenic concentration (4.5 pg/L) and the highest percentage
of sample records with arsenic concentrations greater than
or equal to 4.0 ug/L (59 percent) and greater than or equal to
10.0 ng/L (43 percent). Evaluation of four major aquifer types
(carbonate, crystalline, siliciclastic, and surficial) in Pennsyl-
vania showed that all types had median arsenic concentra-
tions less than 4.0 pg/L, and the highest arsenic concentration
(490.0 pg/L) was in a siliciclastic aquifer. The siliciclastic and
surficial aquifers had the highest percentage of sample records
with arsenic concentrations greater than or equal to 4.0 ug/L
and 10.0 pg/L. Elevated arsenic concentrations were associ-
ated with low pH (less than or equal to 4.0), high pH (greater
than or equal to 8.0), or reducing conditions. For waters clas-
sified as anoxic (405 samples), 20 percent of sampled wells
contained water with elevated concentrations of arsenic; for
waters classified as oxic (1,530 samples) only 10 percent of
sampled wells contained water with elevated arsenic concen-
trations. Nevertheless, regardless of the reduction-oxidation
classification, 54 percent of samples with low pH (13 of
24 samples) and 25 percent of samples with high pH (57 of
230 samples) had elevated arsenic concentrations.

Arsenic concentrations in groundwater in Pennsylva-
nia were correlated with concentrations of several chemical
constituents or properties, including (1) constituents associated

with redox processes, (2) constituents that may have a similar
origin or be mobilized under similar chemical conditions as
arsenic, and (3) anions or oxyanions that have similar sorption
behavior or compete for sorption sites on iron oxides.

Logistic regression models were created to predict and
map the probability of elevated arsenic concentrations in
groundwater statewide in Pennsylvania and in three intrastate
regions to further improve predictions for those three regions
(glacial aquifer system, Gettysburg Basin, Newark Basin).
Although the Pennsylvania and regional predictive models
retained some different variables, they have common charac-
teristics that can be grouped by (1) geologic and soils variables
describing arsenic sources and mobilizers, (2) geochemical
variables describing the geochemical environment of the
groundwater, and (3) locally specific variables that are unique
to each of the three regions studied and not applicable to state-
wide analysis. Maps of Pennsylvania and the three intrastate
regions were produced that illustrate that areas most at risk
are those with geology and soils capable of functioning as
an arsenic source or mobilizer and geochemical groundwater
conditions able to facilitate redox reactions. The models have
limitations because they may not characterize areas that have
localized controls on arsenic mobility. The probability maps
associated with this report are intended for regional-scale use
and may not be accurate for use at the field scale or when
considering individual wells.

Introduction

In many areas worldwide, including Pennsylvania, drink-
ing water is the primary route of human exposure to arsenic
(Hopenhayn, 2006). Arsenic data are sparse for groundwater
because statewide testing of private wells to determine where
concentrations exceed the health-based maximum contami-
nant level (MCL) of 10.0 micrograms per liter (ug/L) for
drinking water, established in 2001 by the U.S. Environmen-
tal Protection Agency (USEPA), is not required throughout
Pennsylvania (U.S. Environmental Protection Agency, 20006).
Domestic wells used for private water supplies in Pennsylva-
nia are not required to be routinely tested for arsenic and other
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contaminants, so homeowners may not know whether their
well water has arsenic concentrations greater than the MCL.

Arsenic is a known carcinogen and consumption of
arsenic in drinking water has been linked to multiple health
problems, including bladder, lung, prostate, and skin cancers;
cardiovascular disease; diabetes; and neurological disfunc-
tion (National Research Council, 1999, 2001; Hopenhayn,
2006; Chen and others, 2007; Benbrahim-Tallaa and Waalkes,
2007; Lin and others, 2008). Arsenic is also a potent endo-
crine disruptor that can cause problems with reproduction
and embryotic development (Davey and others, 2007). In
2001, the USEPA decreased the drinking water MCL from
50.0 to 10.0 pg/L in recognition of the health risks associated
with arsenic (U.S. Environmental Protection Agency, 2006).
Although the USEPA regulates only public water-supply sys-
tems, the MCL has general applicability for the consumption
of drinking water from private domestic wells.

Arsenic concentrations in Pennsylvania groundwater are
difficult to predict on a well-by-well basis because (1) there
is considerable local- and regional-scale spatial variability
in groundwater quality and (2) arsenic has multiple anthro-
pogenic and natural sources. However, the risk of elevated
arsenic concentrations in groundwater is greater in some areas
of Pennsylvania than in others (Low and Galeone, 2006). If
areas with increased probability for elevated arsenic concen-
trations could be identified, health monitoring, water-quality
monitoring, and educational programs could then be directed
where the need is greatest. To address these concerns, the
U.S. Geological Survey, in cooperation with the Pennsylva-
nia Department of Health and Pennsylvania Department of
Environmental Protection, undertook a study in 2010 to deter-
mine areas in Pennsylvania that have increased probability of
elevated arsenic concentrations in groundwater using available
data describing arsenic concentrations, groundwater chemistry,
geology, and other factors.

Purpose and Scope

This report (1) documents arsenic concentrations in
groundwater samples collected in Pennsylvania during
1969-2007, (2) describes the relation between arsenic concen-
trations and reduction-oxidation (redox) conditions and other
groundwater-quality variables, and (3) documents the devel-
opment of logistic regression models to represent the spatial
relation between arsenic concentrations in groundwater and
anthropogenic and natural factors. The models were developed
using existing and constructed geographic information system
(GIS) data for Pennsylvania and three intrastate regions
(glacial aquifer system, Gettysburg Basin, and Newark Basin).
Resulting model coefficients for selected spatial variables
were used to produce maps displaying the predicted probabil-
ity of elevated arsenic concentrations (greater than or equal
to 4.0 ng/L) throughout the State and the selected intrastate
regions.

Background on Arsenic Occurrence

Arsenic is a naturally occurring trace element in rock,
soil, plants, and the aquatic environment. A recent review
of occurrence of arsenic in natural waters describes some
principal sources and mechanisms of arsenic mobility in
groundwater (Smedley and Kinniburgh, 2002). Concentrations
of arsenic in groundwater vary greatly owing to the uneven
distribution of source materials and dynamic geochemical
controls on aqueous arsenic mobility. Although arsenic can
be introduced to the environment from anthropogenic sources
(such as contaminant releases from industrial facilities or
usage as a pesticide for agriculture), it commonly is present
as a trace component in naturally occurring minerals, such
as sulfides (pyrite), hydrous metal oxides (iron oxides), coal,
ironstones, clays, phosphates, silicates, and carbonates. Pyrite
and iron oxides are important sources of elevated arsenic in
groundwater because they are abundant in aquifers, leading to
their dissemination throughout the aquifer matrix or accu-
mulation in fractures, joints, or bedding planes (Smedley and
Kinniburgh, 2002).

Arsenic, present as arsenic minerals or as a trace compo-
nent in other naturally occurring minerals in the soil and aqui-
fers, can be released to or removed from the groundwater as a
result of oxidation and reduction, dissolution and precipitation,
and surface complexation (sorption) reactions on mineral sur-
faces. Arsenian pyrite [Fe(S,As),], arsenopyrite (FeAsS), and
(or) other unspecified sulfide minerals in bedrock and surficial
sediments are common parent sources for naturally occurring
arsenic in the environment (Foster and others, 2003). Substitu-
tion of arsenic for sulfur in sulfide minerals can increase their
susceptibility to weathering and dissolution when exposed to
oxidants (Savage and others, 2000). Arsenic released to solu-
tion by sulfide oxidation commonly has a valence state of V
or IIT and forms the protonated oxyanion complexes, arsenate
(H,AsO,™*) or arsenite (H AsO,"), respectively (Welch and
others, 2000; Smedley and Kinniburgh, 2002; Stollenwerk,
2003). Arsenite is considered the more toxic of the two major
oxyanion forms.

Arsenate [As(V)] predominates in oxic groundwaters,
whereas arsenite [As(II)] predominates in reducing sulfidic
and methanic groundwaters (Welch and others, 2000; Smed-
ley and Kinniburgh, 2002; Stollenwerk, 2003). In strongly
reducing waters that are near saturation with sulfide minerals,
arsenic sulfide complexes and minerals may form. Mueller
and others (2001) noted that the prevalence of arsenite was
correlated with low concentrations of dissolved oxygen that
reflect strongly reducing conditions (dissolved oxygen less
than 0.1 milligrams per liter (mg/L)); arsenate was associ-
ated with oxidizing conditions (dissolved oxygen greater than
8 mg/L). The conversion of As(II) to As(V) in oxic waters
may be relatively slow and can be measured in years (Eary
and Schramke, 1990) with pH, ferric iron, manganese, and
bacteria strongly affecting the rate of oxidation. The reduction
of As(V) to As(III) under anaerobic conditions is generally
much faster than the oxidation of As(III) to As(V).



In groundwater systems, arsenate and arsenite oxy-
anions commonly form surface complexes (adsorption) on
iron oxides and other mineral surfaces (Stollenwerk, 2003).
Although As(V) and As(III) adsorb over a wide pH range,
As(V) is extensively adsorbed at low pH values and desorbs
at alkaline pH; As(III) adsorption increases with pH and peaks
at about pH 8 or 9 (Stollenwerk, 2003). In addition to iron
oxides, a wide variety of minerals including aluminum oxides
and oxyhydroxides, manganese oxides, silica, clays, and car-
bonates may sorb arsenic, and dissolved organic compounds,
phosphate, and other dissolved ions can influence the adsorp-
tion of arsenic.

Mobilization of adsorbed arsenic may occur through
desorption or dissolution of the host mineral. Arsenic associ-
ated with iron oxides tends to be weakly bound on surface
sites (adsorbed) and can be released to the groundwater by
desorption or by dissolution of the iron oxides (Matisoff and
others, 1982; Ayotte and others, 1998; Welch and others, 2000;
Smedley and Kinniburgh, 2002; Stollenwerk, 2003; Thomas
and others, 2008). Changes in pH and (or) redox conditions
can result in the release of arsenic from minerals. Increases
in pH can lead to the desorption of arsenate and arsenite. The
development of reducing conditions can lead to the reductive
dissolution of iron oxides and (or) the reduction of arsenate to
arsenite and the consequent desorption of arsenite (reductive
desorption) (Stollenwerk, 2003; Thomas, 2007). In general,
fine-grained sediments tend to have higher arsenic concentra-
tions than coarse-grained sediments because smaller-sized
particles and (or) those with complex shapes have a higher
surface-area-to-volume ratio and a more reactive surface area
than larger, simply shaped particles (Parks, 1990). The density
of sorption sites and potential exposure to reactive waters
generally increase with the mineral surface area.

Arsenic concentrations in groundwater may increase
(accumulate) with the age of the water. Thomas (2007)
reported that arsenic concentrations of 10.0 pg/L or greater
were found more frequently in old waters (recharged before
1953) as compared to younger waters (recharged since 1953).
Geologic units that have high yields of water are, in general,
highly permeable and transmissive, exhibit rapid recharge,
and, as a result, consist of relatively young water. This young
water will typically be predominantly oxic. In general, water
in shallow wells is more likely to be affected by anthropogenic
contaminants than water in deeper wells; however, excep-
tions are numerous because of complexities of groundwater
flowpaths.

Description of Study Area

Pennsylvania is a physiographically, geologically, and
hydrologically diverse State that covers about 139,859 square
kilometers (54,000 square miles). Pennsylvania includes
parts of six physiographic provinces, which are subdivided
into 20 physiographic sections—(1) Appalachian Plateaus
(Allegheny Mountain, Allegheny Plateau, Clarion Plateau,
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Deep Valleys, Glaciated High Plateau, Glaciated Low Plateau,
High Plateau, Glaciated Pocono Plateau, Northwestern Glaci-
ated Plateau, Pittsburgh Low Plateau, Waynesburg Hills), (2)
Atlantic Coastal Plain (Lowland and Intermediate Upland), (3)
Central Lowland (Eastern Lake), (4) New England (Reading
Prong), (5) Piedmont (Gettysburg-Newark Lowland, Pied-
mont Lowland, Piedmont Upland), and (6) Ridge and Val-

ley (Appalachian Mountain, Great Valley, South Mountain)
(Fenneman and Johnson, 1946; Berg and others, 1989) (fig. 1).
Land-surface elevations range from sea level (North American
Verical Datum of 1988; NAVD 88) (Atlantic Coastal Plain)

to 978 meters (3,210 feet) above NAVD 88 (Appalachian
Plateaus).

The topography of the Appalachian Plateaus Phys-
iographic Province (hereafter province) varies from deep
valleys to glaciated high plateaus with dominant rock types
of sandstone, siltstone, and shale and abundant bituminous
coal in places. The geologic structure of the Appalachian
Plateaus province is complex, varying from horizontal beds
to large-amplitude open folds. The Atlantic Coastal Plain
province has little relief and consists of unconsolidated sand,
gravel, and clay that overlie metamorphic rocks. The Central
Lowland province also has little relief with considerable sand
and gravel and beach deposits in the Lake Erie area. The New
England province includes the steep hills and rounded ridges
of the Reading Prong physiographic section (hereafter sec-
tion), which consists of highly metamorphosed granitic rocks
and quartzite. The Piedmont province topography consists of
broad, rolling lowlands, narrow valleys, and broad, flat-topped
hills. Shale, siltstone, sandstone, and diabase dominate the
Gettysburg-Newark Lowland section of the Piedmont prov-
ince; limestone and dolomite are common in the Piedmont
Lowland section. The Piedmont Upland section is dominated
by schist, gneiss and quartzite. The geologic structures of the
Piedmont province are variable, ranging from half-grabens in
the Gettysburg-Newark Lowland section to complex folds and
faults elsewhere in the province. The topography of the Ridge
and Valley province ranges from narrow to broad valleys with
steep uplands or linear ridge and mountain tops. Dominant
rock types in the Ridge and Valley province are sandstone,
siltstone, and shale, except in the Great Valley section and val-
leys of the Appalachian Mountain section, which are underlain
predominantly by limestone and dolomite rocks. The geologic
structure within the Ridge and Valley province is complex
with many folds, faults, thrust sheets, nappes, and a major
anticlinorium with second- and third-order folds.

Pennsylvania has a complex geological history, which
results in many different rock types within the State, with
the Pennsylvania Geological Survey recognizing almost 200
different geologic formations or members (Berg and others,
1980; Pennsylvania Geological Survey, 2001). Despite the
geologic diversity within the State, the groundwater system in
Pennsylvania has been characterized as being representative
of four major aquifer types—(1) carbonate bedrock (limestone
and dolomite), (2) crystalline bedrock (igneous and meta-
morphic rocks), (3) siliciclastic bedrock (sandstone, siltstone,
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conglomerate, and shale), and (4) surficial (fig. 1) (Lindsey
and Bickford, 1999; Pennsylvania Geological Survey, 2001;
Soller and Packard, 1998). Surficial aquifers consist of
unconsolidated material (sand and gravel) overlying bed-
rock aquifers in depths sufficient to serve as an aquifer, such
as glacial outwash, alluvium, and beach deposits. Surficial
aquifers shown in figure 1 consist of mapped areas of the State
where surficial materials consist of coarse-grained sediment,
and these were designated as surficial aquifers for this report.
Despite this designation, it is still possible for wells located
in other areas of the State within the extent of the Wisconsin
glaciation (fig. 1) to be completed in glacial materials.

Carbonate bedrock aquifers are located in some valleys
of the Pittsburgh Low Plateau section of the Appalachian
Plateaus province, valleys of the Ridge and Valley province,
and the Piedmont Lowland section of the Piedmont prov-
ince. Crystalline bedrock aquifers make up the New England
province, the Piedmont Upland section and diabase intrusions
of the Gettysburg-Newark Lowland section of the Piedmont
province, and South Mountain section of the Ridge and Valley
province. The Central Lowland and Atlantic Coastal Plain
provinces are predominantly composed of surficial aquifers
resulting from beach deposits from Lake Erie and the Atlantic
Ocean. Siliciclastic bedrock aquifers can be found throughout
the rest of the State and are most prominent in the Appalachian
Plateaus province, Gettysburg-Newark Lowland section of
the Piedmont province, and the Ridge and Valley province.
Surficial deposits are also mostly in the Northwestern Gla-
ciated Plateau and Glaciated Low Plateau sections of the
Appalachian Plateaus province and are within the extent of
the Wisconsin glaciation. Some surficial deposits also extend
into the Appalachian Mountain section of the Ridge and Valley
province and the Pittsburgh Low Plateau section of the Appa-
lachian Plateaus province.

Temperature and precipitation vary across the State
according to geography and topography. The average annual
temperature is 11 degrees Celsius (°C) (52 degrees Fahrenheit)
in southern Pennsylvania and 8 °C (46 degrees Fahrenheit) in
the northern part of the State. The warmest areas correspond
to the Atlantic Coastal Plain and Piedmont provinces. Progres-
sive cooling occurs in the higher land-surface elevations of
the Ridge and Valley province, and the Appalachian Plateaus
province is the coolest area of the State (Cuff and others,
1989). Heat and moisture circulate through the State from the
south to the southeast, whereas most of the precipitation-pro-
ducing weather fronts move from west to east. Precipitation
increases from 102 centimeters (cm) (40 inches) at the western
border of Pennsylvania to a maximum of 130 cm (51 inches)
near the highest land-surface elevations of the Appalachian
Plateaus province. The decreasing land-surface elevations in
the Ridge and Valley province create rain shadow effects that
reduce the average annual precipitation to 97 cm (38 inches).
The eastern part of Pennsylvania is strongly affected by
airflows coming directly off the Atlantic Ocean, and this
contributes to the higher average annual precipitation of 102 to
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112 cm (40 to 44 inches), despite the lower land-surface eleva-
tion (Cuff and others, 1989).

Land use is primarily forested (65 percent) followed by
agricultural (27 percent) (Nakagaki and others, 2007). For-
ested is the dominant land use in the north-central, northeast,
and rugged mountain slopes. Agricultural land use predomi-
nates in the valleys of the Ridge and Valley province and
much of the Piedmont province. Urban (6 percent) land use is
dominant in and around Pennsylvania’s major cities, espe-
cially those cities with populations greater than 40,000 (U.S.
Bureau of the Census, 2010), of which most are located in the
Piedmont and Ridge and Valley provinces.

Previous Studies

Arsenic concentrations in groundwater of Pennsylvania
have been documented by a number of previous studies, typi-
cally a county-scale or regional-scale study. Cravotta (2008)
reports that arsenic concentrations in groundwater discharged
to 140 abandoned coal mines in the bituminous and anthra-
cite coalfields of Pennsylvania ranged from less than 0.03 to
64.0 ng/L. Arsenic concentrations were positively correlated
with pH, chloride, bromide, and iodide and inversely corre-
lated with dissolved oxygen and redox potential, indicating the
potential for arsenic mobilization by desorption or reduction
processes, possibly because of interactions with deep, saline
groundwater.

Williams and others (1998), who studied the glaciated
valleys of Bradford, Potter, and Tioga Counties in Pennsylva-
nia, found a correlation between arsenic and older (recharged
before 1953) or briny water and found that arsenic concentra-
tions varied by primary aquifer. Buckwalter and Moore (2007)
concentrated their efforts in Warren County, which is also in
a glaciated region of Pennsylvania, where almost one-third
of the collected samples contained arsenic concentrations
that exceeded the MCL of 10.0 pg/L; the maximum was
490.0 pg/L. They also documented that arsenic concentrations
exhibited seasonal fluctuations and that arsenic concentrations
varied widely, even between adjacent (less than a 76-meter
(250-foot) distance) wells. Low and Galeone (2006) collected
groundwater samples for analysis for total arsenic in the glaci-
ated region of Pennsylvania within eight counties and found
that arsenic concentrations varied greatly over short distances
but did not appear to be related to well depth. Thomas (2007)
studied the association of arsenic with redox conditions in the
glacial aquifer system of the northern United States, which
includes the glaciated portion of Pennsylvania and concluded
that elevated arsenic concentrations are more commonly
detected in older, anoxic groundwaters (recharged before
1953) and that arsenic correlated strongly with constituents
linked to redox processes and anions or oxyanions that sorb to
iron oxides.

Peters and Burkert (2008) examined groundwater-quality
data from over 18,000 wells in the Newark Basin of Penn-
sylvania. They found that variations in pH were strongly
correlated with arsenic concentrations, with the highest
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concentrations of arsenic associated with pH values greater
than 6.4. They concluded that the original source of arsenic in
the study area was most likely black and gray shales contain-
ing arsenian pyrite and that groundwater concentrations of
arsenic are most likely controlled by adsorption/desorption
reaction with iron oxides in red mudstone aquifer materials.
Senior and Sloto (2006) studied the Newark Basin, sampling
58 wells within the study area to identify areas of elevated
arsenic concentrations and characterize the geochemical envi-
ronment associated with elevated concentrations of arsenic
and various constituents. They found that arsenic correlated
most strongly and positively with pH, boron, and molybde-
num; correlated positively with selenium, uranium, nickel,
lithium, fluoride, and strontium; and correlated negatively
with total organic carbon, copper, and dissolved oxygen. They
concluded that arsenic concentrations may be controlled partly
by pH affecting adsorption of arsenate and that the correlation
of arsenic with the presence of many trace elements indicates
similar geochemical controls and (or) distribution in aquifer
materials in the Newark Basin.

Methods of Investigation

Groundwater-quality data from 1969 to 2007 were
obtained by the USGS from local, county, private, State, and
Federal electronic databases. Spatial data consist of variables
representing anthropogenic factors (such as land use and
contamination sites) and natural factors (such as geology and
climate) (appendix 1). Datasets for most factors were avail-
able in geographic information system (GIS) format from
various sources, but additional GIS datasets were developed
specifically for use as explanatory variables during statisti-
cal modeling. Some datasets listed in appendix 1 were not
available statewide or pertinent to statewide analysis, so these
datasets were only populated for selected intrastate regions
(glacial aquifer system, Gettysburg Basin, Newark Basin)
(fig. 2). Also, differences in the extent of explanatory variable
data coverage caused different explanatory variables to have
a different number of sample records associated with them.
For example, a total of 5,023 sample records were available
statewide, but appendix 1 shows 5,021 sample records avail-
able statewide for all of the soil characterization variables
and 5,011 sample records available statewide for two of the
groundwater geochemistry variables. These differences in data
availability were due to the slightly different extents associ-
ated with the explanatory datasets, which caused these datasets
to have slightly different coverage across Pennsylvania.

Groundwater-Quality Data

A database consisting of 5,023 groundwater records
with reported values for arsenic and various associated field
and laboratory measured constituents was created (Low and
Chichester, 2006; Low and others, 2008). More than 25,000

groundwater-quality data records were examined initially. This
number was reduced to create datasets containing values for
arsenic (total and (or) dissolved, 12,781), pH (7,876), and spe-
cific conductance (5,931). The pH and specific conductance
datasets were used to create explanatory spatial variables, and
these datasets include data from areas where arsenic data are
not necessarily available. The arsenic dataset of 12,781 was
further reduced to 5,023 groundwater records by restricting
values to one composite sample per well using three methods:
(1) samples with reported censored arsenic data with detection
levels greater than 4.0 ng/L were removed from the database;
(2) duplicate sites and (or) samples were removed through
verification of local well numbers, site identifiers, geo-
graphical coordinates (latitude and longitude) within the State
boundary, and sample date; and (3) for sites that were sampled
repeatedly, data from the analysis that was associated with

the highest arsenic concentration were retained. If the arsenic
concentrations were identical, then data from the most recent
analysis were retained.

Groundwater-quality data associated with the arsenic
dataset of 5,023 groundwater records were handled in the
following manner: (1) values with remark values coded as
“estimated” were assumed to represent actual values; (2) total
and dissolved constituent samples were not differentiated in
regards to any statistical or chemical analyses, but if total
and dissolved values were reported for the same sample, the
dissolved value was retained; and (3) field measurements (pH,
specific conductance) had precedence over laboratory results.
Estimated dissolved solids represents the maximum reported
value for residue on evaporation at 105 °C, residue dried
at 180 °C, sum of dissolved constituents, or total dissolved
solids. Although water use varied (commercial, monitor,
industrial, public) no differentiation or statistical analysis was
performed to distinguish among industrial, public, private, or
other uses of water.

Groundwater-quality data associated with the arse-
nic dataset of 5,023 groundwater records compiled for this
investigation include up to 53 additional groundwater-quality
constituents. These data were reduced to 31 groundwater-
quality constituents for statistical analysis because of limited
availability of data and differences in data quality among
the records analyzed. Samples were analyzed at the USGS
National Water Quality Laboratory, the Pennsylvania Depart-
ment of Environmental Protection Laboratory, Pennsylvania
Department of Agriculture, and Pennsylvania State University,
as well as a number of private laboratories (Low and Chiches-
ter, 2006; Low and others, 2008). As a result, the groundwater-
quality data represent multiple project designs and goals,
site and well selection criteria, as well as sample collection,
sample preservation, analyte detection levels, and quality-
assurance/quality-control methods.

Spatial Data

Variables representing anthropogenic and natural factors
were compiled and evaluated for statewide and regional study
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areas. Arsenic concentrations in groundwater from 5,023 wells
within the State were combined with additional potential
explanatory data consisting of anthropogenic and natural
factors, and a GIS was used to produce a dataset in which
each well with a measured arsenic concentration was associ-
ated with the explanatory geographic variables. Explanatory
variables differed among statewide and regional study areas

as a result of differences in anthropogenic activities (land use)
and natural conditions (topography, geology, soils) throughout
the State.

A raster dataset was created for each factor or variable
using a GIS. Raster datasets represent a spatial data model
defining space as an array of equally sized cells arranged in
rows and columns with each cell containing an attribute value
and location coordinates. Original data used for the study
consist of previously existing raster or vector (point, line, or
polygon) datasets of various resolutions (appendix 1). Pre-
viously converted, created, or existing raster datasets were
clipped to the State of Pennsylvania’s political boundary (U.S.
Bureau of the Census, 1990b) and snapped to a common
dataset (Nakagaki and others, 2007) to ensure that the cell
alignment of each output raster would be the same. The snap
dataset was the dataset with the smallest resolution, which
was the 30-meter resolution land-cover dataset (Nakagaki and
others, 2007). This means that data for each factor or vari-
able were compiled within 30-meter grid cells, thus, creating
a spatial layer for each factor or variable lining up with a
template representing the State of Pennsylvania consisting of
9,493 rows and 16,508 columns and totaling 156,710,444 cells
across the State.

Anthropogenic Factors

Data representing anthropogenic factors include prox-
imity to known sources of contamination, disturbance, and
land-cover variables. Variables describing proximity to known
sources of contamination illustrate the distance to points or
polygons representing areas that are known to be receiving
treatment for arsenic contamination or that are in need of arse-
nic remediation. Disturbance variables describe the distance to
points where humans are disturbing natural surroundings by
mining or drilling operations. Land-cover variables describe
land-use patterns that result from agricultural operations,
urban development, or population density.

Pennsylvania municipality boundaries were acquired
from the Pennsylvania Department of Transportation (2008).
A list of municipalities containing water suppliers receiving
arsenic treatment and sites or groundwater in need of remedia-
tion owing to arsenic contamination was compiled from the
Pennsylvania Bulletin (1997-2009), and only these munici-
palities were included in a new dataset describing the dis-
tance to the nearest municipality receiving arsenic treatment.
Toxic chemical release inventory data were obtained from the
USEPA (1994), and a similar dataset was created describing
the distance to the nearest point representing toxic chemical
release inventory sites.

Three datasets indicating anthropogenic disturbances to
the landscape were acquired from the Pennsylvania Depart-
ment of Environmental Protection (2008a, 2008b, 2008c).
These datasets describe point locations of (1) underground
and surface coal mining operations, (2) industrial mineral
mining operations, and (3) drilled oil and gas wells. Spatial
datasets were created to represent each of these three datasets
by describing the distance to the point location located closest
to each raster data cell across the State. Therefore, the raster
cell is assigned a value that represents the distance from the
raster cell to the closest data point in the dataset of interest
(coal mining operations, mineral mining operations, oil and
gas wells), whether the closest data point is 30 or 300 meters
away. Because underground and surface coal mining opera-
tions and drilled oil and gas wells are concentrated in the
northwestern and northeastern parts of the State, datasets
associated with those parts of the State were considered only
for analysis of conditions in the glacial aquifer system (fig. 2).

Land-cover classification data for Pennsylvania were
compiled from the 1992 Enhanced National Land Cover Data
(NLCD) (Nakagaki and others, 2007), a dataset that has a
30-meter resolution. The agricultural land-cover classifica-
tion used for this study was created by grouping data by the
following classifications: Orchards/Vineyards/Other, Land
Use Land Cover (LULC) Orchards/Vineyards/Other, Pasture/
Hay, and Row Crops. The urban land-cover classification was
created by grouping data by the following classifications: Low
intensity residential, High intensity residential, LULC residen-
tial, NLCD/LULC forested residential, and Urban/recreational
grasses. Focal statistics were used to create agricultural and
urban land-cover datasets by calculating the average amount
of agricultural or urban land-cover cells within a 500-meter
radius of each raster cell within the State. The resulting
datasets describe the percentage of agricultural and urban land
cover within a 500-meter radius of each raster cell. Population
density data were compiled by block group from 1990 Census
of Population and Housing data by Price (2003) in people per
square kilometer.

Natural Factors

Spatial data describing natural factors that were compiled
and evaluated are climate, geology, geophysical, groundwa-
ter geochemistry, land cover, identified mineral deposit, soils
characterization, and topography variables. Climate variables
describe precipitation, temperature, and groundwater recharge.
Geology variables describe distance to geologic units with
mineral properties that could affect arsenic concentrations
in groundwater or the potential of geologic units to act as an
arsenic source or mobilizer. Geophysical variables describe
average residual total intensity of the earth’s magnetic field.
Groundwater geochemistry variables describe groundwater
corrosivity geologic groupings and pH and specific con-
ductance of groundwater. Land-cover variables that include
natural factors describe forested and wetland land-cover
patterns. Metals and minerals variables describe the intensity



of the earth’s magnetic field resulting from the distribution of
iron minerals and distance to mapped mineral deposits. Soils
characterization variables describe soil water storage, compac-
tion, texture, runoff potential, organic matter, permeability,
thickness, and land-surface slope.

Average annual precipitation and minimum and maxi-
mum temperature data from 1971 to 2000 were compiled from
the Parameter-Elevation Regressions on Independent Slopes
Model (PRISM) Climate Group from Oregon State University
(20064, 2006b, 2006¢). Minimum and maximum temperature
datasets were averaged in order to create a dataset of average
temperatures during 1971-2000. Groundwater recharge rates
from 1951 to 1980 were taken from Wolock (2003).

Geologic units containing potentially substantial acid-
producing sulfide minerals (Pennsylvania Geological Survey,
2005) were obtained from the State bedrock geology spatial
dataset (Pennsylvania Geological Survey, 2001). Diabase
geologic units also were extracted from the State bedrock
geology dataset to form a dataset. A dataset containing point
locations for igneous rock samples (Grossman, 1999) was
obtained from the USGS National Geochemical Database.
Raster datasets were created to represent each of the three pre-
viously described datasets by calculating the shortest distance
from each cell to the nearest polygon or point location in each
dataset. Geophysical data describing average residual total
intensity of the earth’s magnetic field resulting from variations
in earth materials and structure were obtained from Bankey
and others (2002).

Hydrogeochemical stream-sediment data from the
National Uranium Resource Evaluation (NURE) dataset were
obtained from the USGS (2004) and used to create a data-
set of estimated arsenic concentrations in stream sediments.
Arsenic concentrations were estimated from point data using
the inverse distance weighted (IDW) technique, which is an
interpolation method used to estimate concentrations by aver-
aging values for sample points within a defined neighborhood.
Data on arsenic in stream sediments were not available for the
entire State; therefore, this dataset was limited to the Newark
Basin as this was the only regional study area within the State
with a sufficient amount of data for analysis.

Major aquifers of Pennsylvania (carbonate, crystalline,
siliciclastic, and surficial) (fig. 1) were used to create four geo-
logic variables that could be modeled as discrete variables by
performing a spatial intersection with mapped geologic units

Table 1.

[png/L, micrograms per liter; <, less than]
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across the State to assign each well to a major aquifer. The
discrete major aquifer variables were coded as “one” if a well
was located in a particular major aquifer and coded as “zero”
if the well was not located in an aquifer. For example, the
carbonate major aquifer variable would code all wells spatially
intersecting carbonate aquifers as “one” and all wells spatially
intersecting the other major aquifers (crystalline, siliciclastic,
and surficial) as “zero.” Mapped geologic units in Pennsylva-
nia were divided by major aquifers according to their reported
primary lithology descriptions (appendix 2) (Pennsylvania
Geological Survey, 2001). Carbonate bedrock aquifers consist
of primary lithologies of argillaceous dolomite, argillaceous
limestone, dolomite, graphitic marble, high-calcium limestone,
limestone, limestone conglomerate, marble, and shaly lime-
stone. Crystalline bedrock aquifers consist of primary litholo-
gies of albite-chlorite schist, andesite, anorthosite, chlorite-
sericite schist, diabase, feldspathic quartzite, felsic gneiss,
granitic gneiss, granitic pegmatite, graphitic felsic gneiss,
graphitic gneiss, greenstone schist, mafic gneiss, metabasalt,
metadiabase, metagabbro, metarhyolite, oligoclase-mica
schist, phyllite, quartzite, serpentinite, and slate. Siliciclastic
bedrock aquifers consist of primary lithologies of argillaceous
sandstone, argillite, arkosic sandstone, black shale, calcare-
ous sandstone, calcareous shale, graywacke, mudstone, quartz
conglomerate, quartzite, sandstone, shale, siliceous sandstone,
siltstone, and silty mudstone. Surficial aquifers for mapped
geologic units consist of primary lithologies of feldspathic
quartz sand, ferruginous clay, gravelly sand, and sand. Addi-
tionally, bedrock aquifers in some areas of the State are over-
lain by unconsolidated material (Lindsey and Bickford, 1999;
Soller and Packard, 1998) of sufficient depths to serve as an
aquifer. These additional areas of the State where surficial
materials consist of coarse-grained sediments were designated
as surficial aquifers for this report and are indicated in appen-
dix 2. Table 1 gives a summary of arsenic concentrations in
groundwater for the four major aquifer types in Pennsylvania.
All four major aquifer types had median arsenic concentra-
tions less than 4.0 pg/L, and the highest arsenic concentration
(490.0 ug/L) was in a siliciclastic aquifer. The siliciclastic and
surficial aquifers had the highest percentage of sample records
with arsenic concentrations greater than or equal to 4.0 ng/L
and 10.0 pg/L. Tukey’s multiple comparison tests were used
to compare mean arsenic concentrations among the four major
aquifers. Mean arsenic concentrations among all of the major

Summary of arsenic concentrations in groundwater (1969-2007) for the four major aquifer types in Pennsylvania.

. . Number Median arsenic  Maximum arsenic ~ Sample records with arsenic Sample records with arsenic

Major aquifer . - . .

tyne of sample  concentration, concentration, concentrations greater than concentrations greater than

vp records in pg/L in pg/L or equal to 4.0 pg/L, in percent or equal to 10.0 pg/L, in percent
Carbonate 597 <4.0 217.5 9 3
Crystalline 852 <4.0 60.0 6 2
Siliciclastic 3,112 <4.0 490.0 20 8
Surficial 462 <4.0 293.0 34 20
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aquifer types were significantly different (alpha = 0.2), except
for the comparison of mean arsenic concentrations between
the carbonate and crystalline major aquifer types. Major aqui-
fer variables were included in the statewide analysis but were
not included in the analysis of the regional study areas because
these consist of a broad characterization of lithologies that do
not differentiate well among regions containing only a few
geologic units and (or) geologic units categorized as the same
major aquifer.

Another dataset was developed for groundwater corrosiv-
ity. Geologic units across the State (Pennsylvania Geological
Survey, 2001) were ranked according to estimated ground-
water corrosivity to indicate the potential for groundwater
to intereact with arsenic-bearing minerals and to recreate the
dataset resulting from a 1996 study by Langland and Dugas
(1996). They evaluated the relations among corrosive ground-
water, water chemistry, and geology by the use of a modified
version of the Langelier Saturation Index for 11 lithologic
units based on the State map unit descriptions, then ranked the
units from most to least corrosive according to color codes.
Corrosivity rankings were assigned to each lithologic unit
grouping according to the ranks used by Langland and Dugas
(1996): (1) quartzite, (2) crystalline rocks excluding diabase
and quartzite, (3) anthracite-bearing siliciclastic rocks, (4)
unconsolidated sediments, (5) predominantly shale with other
siliciclastic rocks, (6) predominantly sandstone with other
siliciclastic rocks, (7) diabase, (8) mixed siliciclastic rocks
with bituminous coal, (9) shale, (10) limestone-bearing silici-
clastic rocks, and (11) carbonate rocks.

Groundwater-quality data for pH and specific conduc-
tance were obtained from data compilations reported by Low
and Chichester (2006) and Low and others (2008) from areas
where arsenic data were not necessarily available. The USGS
(2004) NURE hydrogeochemical data were also used, which
have additional values for specific conductance and pH for
groundwater in the entire State; these data, in addition to the
Low and Chichester (2006) and Low and others (2008) data
compilations, provided additional spatial coverage. These
groundwater-quality datasets were combined and used to
estimate the continuous spatial distribution of pH and spe-
cific conductance across the State using the inverse distance
weighted (IDW) technique. IDW is an interpolation technique
used for predicting values for unmeasured locations using
measured values surrounding the prediction location and
is based on the assumption that things that are close to one
another are more alike than those that are farther apart. A state-
wide pH dataset representing pH in groundwater in bedrock
and surficial aquifers across the State was created from a total
of 13,598 values with 7,876 (3,251 of these had associated
arsenic concentrations) of these values from data compilations
reported by Low and Chichester (2006) and Low and oth-
ers (2008) and 5,722 of these values from the USGS (2004)
NURE hydrogeochemical data. A statewide specific conduc-
tance dataset representing specific conductance in groundwater
in bedrock and surficial aquifers across the State was created
from a total of 11,652 values with 5,931 (2,514 of these had

associated arsenic concentrations) of these values from data
compilations reported by Low and Chichester (2006) and Low
and others (2008) and 5,721 of these values from the USGS
(2004) NURE hydrogeochemical data. The IDW technique
was performed for each grouping of geologic units accord-
ing to the groundwater corrosivity ranking dataset previously
described (Langland and Dugas, 1996). Because there are 11
different corrosivity rankings in the State, a separate IDW
interpolation was calculated for each grouping of units to
establish boundaries in the pH and specific conductance datas-
ets, and each of the interpolated datasets were combined into a
statewide raster dataset. Separate pH and specific conductance
datasets were created to represent groundwater geochemistry
in the glacial aquifer system. For this area, groundwater-
quality data on pH and specific conductance from Low and
Chichester (2006) and Low and others (2008) were used only
if the wells were finished in unconsolidated aquifers and data
from NURE hydrogeochemical data (U.S. Geological Survey,
2004) were used if the well types were “dug” or “driven.” Of
the data meeting these criteria, only those data from within the
defined boundary of the glacial aquifer system (fig. 2) were
included as estimates of pH and specific conductance. A pH
dataset representing pH in groundwater in the glacial aquifer
system in Pennsylvania was created from a total of 619 values
with 349 (184 of these had associated arsenic concentrations)
of these values from data compilations reported by Low and
Chichester (2006) and Low and others (2008) and 270 of
these values from the USGS (2004) NURE hydrogeochemi-
cal data. A specific conductance dataset representing specific
conductance in groundwater in the glacial aquifer system in
Pennsylvania was created from a total of 562 values with 293
(192 of these had associated arsenic concentrations) of these
values from data compilations reported by Low and Chiches-
ter (2006) and Low and others (2008) and 269 of these values
from the USGS (2004) NURE hydrogeochemical data.

The forested land-cover classification used for this study
consists of deciduous forest, evergreen forest, and mixed
forest (Nakagaki and others, 2007). The wetland land-cover
classification consists of woody wetlands and emergent herba
ceous wetlands (Nakagaki and others, 2007). Focal statistics
were used to create forested and wetland land-cover datasets
by calculating the average value of each grouped land-cover
type in cells within a 500-meter radius of each cell across the
State.

Mineral resources data were obtained from the min-
eral resources data system of the USGS (2007). The mineral
resources data were analyzed as a whole and according to
metallic and nonmetallic minerals. Raster datasets were cre-
ated to represent each of the three datasets (distance to all
mineral resources, distance to metallic mineral resources,
distance to nonmetallic mineral resources) by calculating the
shortest distance from each cell to the nearest mineral resource
point in each dataset.

Soil characterization criteria were obtained from Wolock
(1997), who used the STATSGO soil database (U.S. Depart-
ment of Agriculture, 1993). The soil data include available



water capacity, bulk density, hydrologic soil group, organic
matter, permeability, thickness, slope, and texture. Available
water capacity describes the amount of water that the soil is
able to store. Bulk density is a measure of soil compaction.
Hydrologic soil groups define the runoff potential of soil and
are described according to the percentage of hydrologic soil
group present. Hydrologic soil groups are described as Group
A, Group B, Group C, and Group D, in order from low to high
runoff potential, with dual hydrologic soil groups (AD, BC,
CD) assigned on the basis of drained and undrained condi-
tions. Soil organic matter represents the percentage of organic
matter that a soil contains. Permeability is a measurement
of the ability of water to flow through the soil. Thickness
describes the distance from the surface of the soil to the under-
lying solid bedrock. Slope, the percentage of soil land-surface
slope, describes the potential of precipitation to run off land
surfaces or infiltrate into subsurfaces. Texture describes the
percentage of sand, silt, or clay that a soil contains.
Land-surface elevation data were retrieved from the
USGS (2009) 1-arc second National Elevation Dataset. These
data were used to create a slope dataset by calculating the
maximum rate of change between each cell within the land-
surface elevation dataset and its neighbors. Sinkhole location
data were obtained from the Pennsylvania Geological Survey
(2007) online sinkhole inventory and database (Kochanov and
Reese, 2003). These point data were used to create a raster
dataset by calculating the shortest distance from each cell
to the nearest sinkhole location. Stream flowline data were
obtained from the USGS (2005) high-resolution National
Hydrography Dataset and were used to create a stream density
raster dataset by calculating the total length of streams within
a 500-meter search radius area of each cell.

Statistical Methods

Spearman’s rank correlation coefficient (740) (Helsel and
Hirsch, 2002), a nonparametric statistical test that uses the
data ranks, was used to evaluate the significance of relations
and differences among statewide data for arsenic concentra-
tions and 31 groundwater-quality parameters (where sample
size exceeded 30). Spearman’s rho also was used to test for
statistical significance in relations among groundwater-quality
parameter data (where sample size exceeded 30). Spearman’s
rho is a monotonic correlation test in which a positive value
of rho indicates that the response variable (Y) increases as
the explanatory variable (X) increases, and a negative value
of rho indicates that the response variable (Y) increases as
the explanatory variable (X) decreases. High positive val-
ues (lower negative values) of 740 indicate a strong mono-
tonic correlation. Spearman’s 7o was performed on rank-
transformed arsenic concentrations and groundwater-quality
parameter data, where ranks were assigned so that non-detects
were ranked lower than the lowest value detected or estimated,
following the methodology of Gilliom and others (2006).
Reported values and censored values less than 4.0 pg/L were
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ranked as if they were all 3.9 ug/L, which is the lowest rank.
Any associated groundwater-quality data constituent with a
non-detect data value was ranked as if it had a value of 0 so
that the non-detect values would be ranked lower than the
lowest value detected or estimated. All other measured and
estimated concentrations of arsenic and other groundwater-
quality constituent data were ranked according to their nomi-
nal values.

Univariate and multivariate logistic regression analyses
(Hosmer and Lemeshow, 1989; Helsel and Hirsch, 1992) were
used to develop predictive models for the State and for three
intrastate regions—glacial aquifer system, Gettysburg Basin,
and Newark Basin—for which the model results were used to
predict the probability of detecting concentrations of arsenic in
groundwater greater than or equal to 4.0 ug/L on the basis of
explanatory variables that could affect arsenic values. For the
resulting logistic regression analyses, a binary response vari-
able was defined by dividing the measured arsenic concentra-
tions into two groups: concentrations greater than or equal to
4.0 pg/L (exceedances) were classified as “one” and concen-
trations less than 4.0 pg/L (nonexceedances) as “zero”. The
threshold of 4.0 ug/L was selected because this value repre-
sents the maximum common detection level for the censored
arsenic concentration data. For the purposes of this report,
arsenic concentrations greater than or equal to 4.0 pg/L are
referred to as “elevated.”

Univariate logistic regression was used as a first step to
test the significance of individual explanatory variables as
indicators of elevated arsenic concentrations. Standardized
coefficients, which allow common unit comparisons among
model variables, indicate the nature of the univariate rela-
tion, with positive relations indicated by values greater than
zero and inverse relations indicated by values less than zero
(Menard, 2002). An alpha level of 0.2 was chosen as the inclu-
sion criteria for selecting explanatory variables to include in
multivariate analysis rather than the traditional alpha level of
0.10. Hosmer and Lemeshow (1989) suggest that a traditional
alpha level of 0.10 has failed to identify variables known to be
important during some logistic regression analyses, and other
variables may not be considered important in a model until
they are included with other complementary variables.

Stepwise logistic regression was used to create multivari-
ate logistic regression models that predict the probability of
elevated arsenic concentrations in groundwater in Pennsylva-
nia. The logistic regression model begins with the intercept;
then explanatory variables are added or eliminated through
forward and backward selection procedures until changes in
variables no longer change the log of the odds ratio (logit).
The odds ratio is based on the probability of exceeding the
given threshold value, and the log of the odds ratio (logit)
transforms a variable constrained between 0 and 1 into a
continuous, unbounded variable that is a linear function of the
explanatory variables and converts the predicted values of the
response variable into probability units (Hosmer and Lem-
eshow, 1989; Helsel and Hirsch, 1992).
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A number of statistical parameters are examined when
evaluating multivariate logistic regression models to deter-
mine the success of a model (Menard, 2002). Predictive model
performance was evaluated using measures such as (1) overall
model significance, (2) values and probabilities associated
with explanatory variables, (3) model fit statistics, (4) multi-
collinearity diagnostics, (5) linear regression, and (6) Pearson
residuals.

Success and significance of a model is measured by
the log-likelihood ratio, which compares observed values
with predicted values (Hosmer and Lemeshow, 1989). The
most significant model will have the highest log-likelihood
ratio, but the degrees of freedom, or number of explanatory
variables, are also taken into account. Explanatory variable
significance is indicated by p-values less than 0.05 and shows
how specific explanatory variables improve the ability of the
model to predict the probability of elevated arsenic concentra-
tions in groundwater.

Logistic regression model-fit statistics used in this study
include the Hosmer-Lemeshow (H-L) goodness-of-fit test,
generalized and maximum rescaled r-square, percent concor-
dance, model sensitivity, and area under the Receiver Operat-
ing Characteristic (ROC) curve. The H-L statistic was used
to evaluate model calibration by calculating the degree of
correspondence between the predicted probabilities exceed-
ing the threshold and the actual concentrations exceeding the
threshold. For this test, p-values less than 0.05 indicate that
the predicted probabilities are significantly different than the
actual concentrations. Therefore, a higher H-L p-value will
indicate a well-calibrated model (Hosmer and Lemeshow,
1989). There is no r-square value that can be produced by
the logistic regression model that is identical to the r-square
value from linear regression; however, some substitutes for the
r-square value have been calculated (Hosmer and Lemeshow,
1989). The generalized r-square value (Cox and Snell, 1989)
is based on maximizing the log-likelihood and is a general-
ized method of estimating an r-square value. The maximum-
rescaled r-square value (Nagelkerke, 1991) is another method
that approximates the linear-regression r-square. Neither of
these statistics can be interpreted as the percentage of vari-
ance explained by the model, but they can be used to compare
one model with another. Logistic regression model results
also are described in terms of percent concordance, which
is the overall rate of correct classification. This value is the
number of observed exceedances predicted by the model as
exceedances, plus the number of observed nonexceedances
predicted by the model as nonexceedances, divided by the
combined number of observed exceedances and nonexceed-
ances (Hosmer and Lemeshow, 1989). Model sensitivity is the
number of observed exceedances predicted as exceedances,
divided by the total number of observed exceedances. Higher
percent concordance and sensitivity values indicate better
fitting models. The area under the ROC curve is represented
by the c statistic, which is a measure of the model’s ability to
discriminate between groundwater samples that have arsenic
concentrations greater than or equal to 4.0 pg/L and those that

do not. The c statistic is a value that varies from 0.5 to 1.0
with higher values indicating better discrimination. Hosmer
and Lemeshow (1989) consider values from 0.7 to 0.8 to show
acceptable discrimination and values from 0.8 to 0.9 to show
excellent discrimination.

Multicollinearity in multivariate regression models is
the result of strong correlations among two or more explana-
tory variables. Models with strongly correlated explanatory
variables can produce incorrect signs and magnitudes of
regression coefficients, which lead to incorrect conclusions
about relations between explanatory and dependent variables
(Allison, 2001). Multicollinearity was evaluated using Toler-
ance and Variance Inflation Factor (VIF) multicollinearity
diagnostic statistics, which are based on linear regression
analysis of explanatory variables (Allison, 2001). The Toler-
ance is defined as 1 — 12, where 12 is the coefficient of deter-
mination for the regression of one independent variable on
all remaining independent variables (Allison, 2001; Menard,
2002). The VIF is equal to the reciprocal of the Tolerance and
describes how inflated the variance of coefficient is compared
to what it would be if there were no multicollinearity (Alli-
son, 2001). Although there are no formal thresholds to use for
the Tolerance or VIF in detecting the presence of multicol-
linearity, Allison (2001) suggests that Tolerance values less
than 0.4 (VIF greater than 2.5) may indicate the presence of
multicollinearity.

Calibration for logistic regression predictive models
(statewide, glacial aquifer system, Gettysburg Basin, Newark
Basin) were evaluated using the degree of correspondence
between observed elevated arsenic concentrations in ground-
water and the predicted probabilities of elevated arsenic
concentrations in groundwater. Data were compiled describing
observed detections of elevated arsenic concentrations and the
associated predicted probability of an elevated arsenic concen-
tration. Observed detections of elevated arsenic concentrations
were calculated by classifying arsenic concentrations less than
4.0 pg/L as “zero” and arsenic concentrations greater than or
equal to 4.0 pg/L as “one.” Predicted probabilities of elevated
arsenic concentrations in groundwater were calculated accord-
ing to the model results for each of the predictive models
(statewide, glacial aquifer system, Gettysburg Basin, Newark
Basin). Data were sorted according to the predicted probability
of elevated arsenic in groundwater and divided according to
deciles. The observed detections of elevated arsenic were aver-
aged for each decile to calculate the percentage of observed
detections, and predicted probabilities were also averaged to
calculate the average predicted probability for each 10-per-
cent decile. Linear regressions were constructed between the
percentage of observed detections of elevated arsenic concen-
trations and the average predicted probability for each decile.
R-square values associated with each regression were used to
assess model calibration for the predictive models.

Pearson residuals were calculated for each individual pre-
dicted value to determine which predicted values were most
poorly fit by the logistic regression models and spatially show
the predictive error for each study area. The Pearson residual



statistic calculates the difference between observed and esti-
mated probabilities and divides the result by the binomial stan-
dard deviation of the estimated probability (Menard, 2002).
Cases where values are equal to zero indicate that the prob-
ability of arsenic exceeding 4.0 ng/L is exactly what would

be expected based on the observation. Cases with positive
residual values indicate that the model predicted a lower prob-
ability than what was observed (under prediction), whereas
cases with negative values indicate that the model predicted a
higher probability than what was observed (over prediction).
Spatial evaluation of the highest and lowest residual values
can indicate specific areas where the model does not do a good
job of predicting the probability of elevated arsenic.

Probability Maps

Maps showing the predicted probability of elevated arse-
nic in groundwater in Pennsylvania and three selected regions
within the State were constructed using results from the logis-
tic regression models. Model coefficients for each explanatory
variable along with the variable’s value were used to calculate
and map probabilities of elevated arsenic in groundwater
within the State.

Each variable was compiled for 30-meter grid cells to
estimate the probability of elevated arsenic in groundwater in
Pennsylvania or in selected regions within Pennsylvania. In
order to create the statewide and regional probability maps
depicting the predicted probability of elevated arsenic concen-
trations in groundwater, the values for the 30-meter grid cells
for each explanatory variable were used in logistic regression
equations within a map-algebra GIS application. For example,
the equation for the statewide model was expressed as

PREDICTION = 1 /(1 + (EXP(- (INT+(PE, * (1)
[GRANK] ) + (PE, * [SPCIDW]) + (PE, *
[AWCAVE] ) + (PE,* [PHIDW]) )))) ,

where

PREDICTION is the output dataset describing the predicted
probability of detecting elevated arsenic
concentrations in groundwater in
Pennsylvania,

EXP is the base of the natural logarithm,
INT is the model intercept,

PE ,PEPE,
and PE, represent the parameter estimates for each
of the explanatory variables that were
in the final statewide logistic regression
model, and
GRANK,
SPCIDW,
AWCAVE,
and PHIDW are datasets describing the explanatory

variables that were in the final statewide
logistic regression model.
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This process was used to calculate the probability that arsenic
in groundwater exceeds 4.0 pg/L for each cell as a fraction.
The units for the predicted probability datasets were then
converted from fractions to percentages in order to produce
probability datasets with units consistent with those units
used for probability datasets produced by similar studies. The
resolution of the predicted probability datasets was reduced
by aggregating each dataset to keep dataset resolution con-
sistent with the input explanatory dataset that had the lowest
resolution for each model. The proportions of the predicted
probability datasets were altered by resampling the datasets to
correspond with the accuracy of the explanatory dataset hav-
ing the lowest resolution for each model. For example, the soil
characterization variables typically had the lowest resolution
(1:250,000) of any variables ending up in the final models,

so the predicted probability maps representing these models
were aggregated to 1:250,000 because it is the same resolu-
tion as the original data used to create the soil characteriza-
tion variables. The resulting dataset for each of the predicted
probability maps represents the percent probability of arsenic
concentrations exceeding or equal to 4.0 ug/L in groundwater.

Arsenic Concentrations and Related
Factors

This section of the report documents arsenic concentra-
tions and related factors in Pennsylvania using analyses that
include only samples with arsenic concentrations. Later sec-
tions of the report consider subsets of the data to predict the
probability of elevated arsenic concentrations in groundwater.

Arsenic Concentrations

Arsenic concentrations in 5,023 samples of Pennsylva-
nia groundwater ranged from less than the detection level of
0.01 pg/L to 490.0 pg/L. The median concentration was less
than 4.0 pg/L. About 82 percent of groundwater samples had
arsenic concentrations less than 4.0 pg/L, and about 18 percent
of samples had concentrations greater than or equal to the
model threshold of 4.0 pg/L. Almost 8 percent of groundwater
samples had arsenic concentrations greater than or equal to the
USEPA MCL of 10.0 pg/L.

The statewide spatial distribution of the 5,023 samples
with measured arsenic concentrations is shown in figure 3.
Most of the data are concentrated in the southeastern part of
the State because of the large number of groundwater-quality
analyses conducted in that area. In most areas, there was a
wide range of arsenic concentrations. Table 2 gives a summary
of arsenic concentrations in groundwater for the six physio-
graphic provinces in Pennsylvania. When analyzed according
to physiographic province, the Central Lowland province
had the highest median arsenic concentration (4.5 pg/L)
and the highest percentage of sample records with arsenic
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Table 2. Summary of arsenic concentrations in groundwater (1969-2007) for the six physiographic provinces in Pennsylvania.

[png/L, micrograms per liter; <, less than]

. . Number  Median arsenic Maximum arsenic Sample records with arsenic ~ Sample records with arsenic
Physiographic - - . .
rovince of sample  concentration, concentration, concentrations greater than concentrations greater than
P records in pg/L in pg/L or equal to 4.0 pg/L, in percent or equal to 10.0 pg/L, in percent
Appalachian Plateaus 1,870 <4.0 490.0 19 9
Atlantic Coastal Plain 52 <4.0 50.0 35 19
Central Lowland 76 4.5 293.0 59 43
New England 87 <4.0 20.0 14 6
Piedmont 1,637 <4.0 85.5 15
Ridge and Valley 1,301 <4.0 230.0 18 6

concentrations greater than or equal to 4.0 pg/L (59 percent)
and greater than or equal to 10.0 pg/L (43 percent) (table 2).
No formal statistical test was conducted to evaluate arsenic
difference according to physiographic provinces or geologic
units in Pennsylvania. Geologic units are listed in appendix 2.

Significance of Groundwater-Quality Properties
Related to Arsenic

Spearman’s rho was used to investigate possible correla-
tions among arsenic and 31 other groundwater-quality proper-
ties and constituents: pH, specific conductance, dissolved
oxygen, carbon dioxide, alkalinity, major ions (calcium,
magnesium, sodium, potassium, iron, manganese, chloride,
sulfate, silica, and fluoride), nutrients [nitrate plus nitrite as
nitrogen (N), ammonia, phosphate, total organic carbon],
and trace elements (aluminum, barium, cadmium, chromium,
cobalt, copper, lead, mercury, nickel, selenium, strontium, and
zinc). Some of these constituents, such as dissolved oxygen,
iron, manganese, sulfate, nitrate, ammonia, and total organic
carbon, could be related to the redox environment as described
in the next section. Others may have a common source or have
mobility similar to that of arsenic, considering variations in
redox and pH. Correlations between arsenic and groundwater-
quality constituents were examined on a statewide basis, and
those groundwater-quality constituents that were statistically
significant (p<<0.0001) and had Spearman’s r%o0 values of at
least 0.10 in the statewide analysis were also examined on a
major aquifer basis to determine how correlations vary in the
State according to major aquifer type. Correlations may differ
by lithology if examined according to geologic unit because
geochemical controls on arsenic occurrence and mobility in
groundwater may differ locally across the State according to
lithology.

For the statewide dataset, a total of 17 constituents and
physical properties had correlations with arsenic that were
statistically significant (p<0.0001), with Spearman’s rho
values of at least 0.10 (table 3). Out of these 17 constituents
and physical properties, 1, 0, 10, and 7 had correlations with

arsenic that were statistically significant (p<0.0001), with
Spearman’s rho values of at least 0.10 for the carbonate, crys-
talline, siliciclastic, and surficial major aquifers, respectively.
In order of decreasing magnitude of Spearman’s 740 for the
statewide analysis, cobalt, strontium, nickel, sodium, barium,
specific conductance, aluminum, alkalinity, manganese, iron,
silica, calcium, pH, sulfate, and total organic carbon were
positively correlated with arsenic, whereas dissolved oxygen
and nitrate plus nitrite (as N) were inversely correlated with
arsenic. Positive and inverse correlations for the major aquifer
analyses were the same as the statewide analysis.

The statewide correlation of arsenic with cobalt,
strontium, nickel, sodium, barium, aluminum, and calcium
indicates that these constituents may occur with arsenic in
the geologic environment, and in some cases, they may be
mobilized under similar chemical conditions. Correlations of
arsenic with these constituents also occurred in the siliciclastic
major aquifer; correlations of arsenic with sodium and barium
occurred in the surficial major aquifer. This finding indicates
that these constituents occur with arsenic in the siliciclastic
major aquifer geologic environment and may be mobilized
under chemical conditions occurring in this major aquifer.

Statewide correlations with specific conductance, pH,
alkalinity, and calcium may reflect greater releases of traces
of arsenic with increasing dissolution of major minerals or
the tendency for arsenic to be mobilized (desorbed) under
alkaline conditions. In uncontaminated water, and except for
carbonate aquifers, higher specific conductance values often
are associated with older water, which has a higher residence
time in fractures and other secondary openings than in soils
and sediments and greater contact with minerals, leading to
increased hardness, alkalinity, and arsenic concentrations in
the water. Correlations with specific conductance and calcium
occurred for the siliciclastic major aquifer, and correlations
with specific conductance and alkalinity occurred for the surfi-
cial major aquifer.

Positive correlations of arsenic with iron, total organic
carbon and negative correlations of arsenic with dissolved
oxygen and nitrate plus nitrite (as N) are consistent with
the observation that arsenic may be released by iron oxides
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Table 3. Spearman’s rho correlations for the 17 groundwater-quality constituents that have the best correlations with arsenic in

groundwater in Pennsylvania and major aquifer types.

[p less than 0.0001 and rho greater than or equal to 0.10; NS, not signficant (p equal to or greater than 0.0001 and (or) r%o less than 0.10)]

Carbonate major

Statewide .
aquifer

Groundwater-quality

Crystalline major
aquifer

Siliciclastic major
aquifer

Surficial major
aquifer

constituent

Number of Spearman’s Number of Spearman’s Number of Spearman’s Number of Spearman’s Number of Spearman’s

samples rho samples rho samples rho samples rho samples rho
Direct correlation
Cobalt 791 0.287 36 NS 102 NS 592 0.206 61 NS
Strontium 939 0.252 43 NS 78 NS 725 0.254 93 NS
Nickel 1,131 0.237 109 NS 129 NS 797 0.284 96 NS
Sodium 3,546 0.180 477 NS 685 NS 2,136 0.173 248 0.377
Barium 2,851 0.171 399 NS 467 NS 1,729 0.145 256 0.450
Specific conductance 2,514 0.155 222 NS 451 NS 1,561 0.150 280 0.275
Aluminum 1,794 0.155 185 NS 158 NS 1,285 0.225 166 NS
Alkalinity 2,411 0.155 346 NS 518 NS 1,390 NS 157 0.390
Manganese 3,541 0.153 477 NS 730 NS 2,086 NS 248 0.447
Iron 3,938 0.140 519 NS 789 NS 2,351 NS 279 0.418
Silica 2,378 0.134 301 NS 612 NS 1,330 0.230 135 NS
Calcium 3,445 0.121 456 NS 683 NS 2,079 0.119 227 NS
pH 3,251 0.113 421 NS 453 NS 2,109 NS 268 NS
Sulfate 3,837 0.103 502 0.183 742 NS 2,294 0.124 299 NS
Total organic carbon 2,096 0.101 352 NS 500 NS 1,146 NS 98 NS
Inverse correlation

Dissolved oxygen 639 -0.268 38 NS 205 NS 338 NS 58 NS
Nitrate plusnitrite = 3650 9108 509 NS 768 NS 2256 NS 269 0235

(as N)

under reducing conditions (Smedley and Kinniburgh, 2002).
Specifically, the inverse correlation of arsenic with dissolved
oxygen and nitrate plus nitrite (as N) and the direct correla-
tion with iron and manganese indicate that reductive dissolu-
tion of iron and manganese oxides may be a mechanism that
releases arsenic into groundwater. This may be especially

true in the surficial major aquifer because arsenic had a direct
correlation with iron and manganese and an inverse correla-
tion with nitrate plus nitrite (as N), and these correlations were
higher for the surficial major aquifer than those correlations
that resulted from the statewide analysis (table 3). Smedley
and Kinniburgh (2002) state that arsenic can be released or
desorbed from mineral oxides in aquifer materials under alka-
line (high pH) conditions, as can other anion-forming elements
such as silica and sulfate, which explains the direct correlation
of these constituents with arsenic statewide and in the silici-
clastic major aquifer.

Redox Conditions

Because arsenic can be mobilized in groundwater as
a result of redox reactions and pH conditions, redox-pH
matrices describing redox conditions and pH in groundwater
were created (table 4) to further evaluate geochemical controls
within the State. The frequency and number of samples with
arsenic concentrations greater than or equal to 4.0 pg/L were
summarized for specified redox and pH classifications. Redox
conditions of groundwater were classified on the basis of con-
centrations of dissolved oxygen, nitrate, sulfate, manganese,
and iron. This redox classification system, based on the work
of McMahon and Chapelle (2008), used four redox catego-
ries for this report: (1) anoxic (dissolved oxygen, nitrate, or
sulfate less than 0.5 mg/L, manganese greater than 50.0 pg/L,
and iron greater than 100.0 pg/L), (2) mixed (dissolved
oxygen, nitrate, or sulfate greater than or equal to 0.5 mg/L
and either manganese greater than 50.0 pg/L or iron greater
than 100.0 pg/L), (3) oxic (dissolved oxygen, nitrate, or
sulfate greater than or equal to 0.5 mg/L, manganese less than
50.0 pg/L, and iron less than 100.0 pg/L), and (4) unknown
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(data for dissolved oxygen, nitrate, or sulfate and more than
one of the other constituents were missing). As a result of the
small number of sites with measured dissolved oxygen values
(12.7 percent of the dataset), much of the redox classifications
(oxic, anoxic, mixed, and unknown) were dependent upon the
presence and concentration of nitrate and (or) sulfate and man-
ganese and (or) iron. Five general pH classifications were also
considered: (1) pH less than 4.0, (2) pH greater than or equal
to 4.0 and less than 6.0, (3) pH greater than or equal to 6.0 and
less than 8.0, (4) pH greater than or equal to 8.0, and (5) pH
concentration unknown.

The frequency of redox conditions of groundwater sam-
ples in Pennsylvania was 8 percent of samples were anoxic,

3 percent were mixed, 30 percent were oxic, and 59 percent
were unknown (table 4). The frequency of pH classifications
of groundwater samples was as follows: 1 percent of samples
had pH values less than 4.0, 5 percent had pH values ranging
from greater than or equal to 4.0 to less than 6.0, 54 percent
had pH values ranging from greater than or equal to 6.0 to
less than 8.0, 5 percent had pH values greater than or equal
to 8.0, and 35 percent of samples had unknown pH values. In
table 4, the percentage of samples within each pH and redox
classification with arsenic concentrations greater than or equal
to 4.0 pg/L is color coded to highlight those classifications
with the greatest frequency of samples with elevated arsenic
concentrations.

As groundwater became more reducing, elevated arsenic
concentrations were detected more frequently (table 4). For
example, 10 percent of oxic waters had elevated arsenic
concentrations, as compared to 20 percent of anoxic waters.
Also, for a given pH range, more samples with anoxic redox
classification more often had elevated arsenic concentrations
than samples with oxic or mixed classification. This finding
is consistent with the release of arsenic from iron oxides by
reductive dissolution of iron oxides or reductive desorption
(reduction of arsenate and consequent desorption of arsenite).
For oxic and mixed redox classifications, the percentage of
samples with elevated arsenic concentrations increased with
pH, which is consistent with pH control of arsenate and arse-
nite adsorption by iron oxides. Regardless of redox classifica-
tion, samples with pH of less than 4.0 or pH of greater than
or equal to 8.0 constituted the highest percentages of samples
with elevated arsenic concentrations, indicating that both high
and low pH may be associated with elevated arsenic. At pH
values less than 4.0, iron oxides may not be stable, which is
indicated by elevated iron concentrations and low sulfate and
iron ratios. Redox/pH matrices show that as waters become
more strongly reduced, strongly acidic, or strongly alkaline,
arsenic concentrations tend to increase. Elevated pH may
provide a geochemical trigger to release arsenic from the iron
oxides. Iron and manganese are highly soluble under reducing
conditions, which are common in confined aquifers or where
groundwater is in contact with organic material. In addition,
dissolution of iron oxides may occur in strongly acidic waters.

Predicted Probability of Elevated
Arsenic Concentrations in
Groundwater

Logistic regression models were created to predict the
probability of elevated arsenic concentrations in groundwa-
ter in the State of Pennsylvania and to further improve those
predictions for three regions within the State: (1) glacial
aquifer system, (2) Gettysburg Basin, and (3) Newark Basin
(fig. 2). For the purposes of this report, the predictions for the
statewide map represent both surficial and bedrock aquifers,
which may differ for any given area, because wells known
to be completed in bedrock materials and wells known to be
completed in glacial and (or) surficial materials were used for
the statewide study. The glacial aquifer system consists of the
portion of the State encompassed by the extent of the Wiscon-
sin glaciation (Pennsylvania Geological Survey, 1995) (fig. 1)
and those areas in the northern half of the State overlain by
surficial material consisting of coarse-grained sediments
(Soller and Packard, 1998) (fig. 1). Only wells known to be
completed in glacial materials were used for the glacial aquifer
system model, and these wells were also included in the
statewide model analysis. The Gettysburg and Newark Basins
are located in the Gettysburg-Newark Lowland section of the
Piedmont province (fig. 1), with the Gettysburg Basin consist-
ing of the southwestern part of the section and the Newark
Basin consisting of the northeastern part of the section. The
purpose of creating models for these three regions was to cre-
ate a model specifically for the glaciated part of the State and
to evaluate whether predictions could be improved in these
areas of Pennsylvania by including locally specific variables
that are not representative of or available across the entire
State. These regional models were created using explanatory
variables that were available or statistically significant only for
certain regions within the State.

Model development included univariate and multivari-
ate logistic regression analyses. Univariate relations between
elevated arsenic concentrations and explanatory variables
were evaluated and are summarized in appendix 3; coefficients
indicate the nature of the univariate relation. An alpha level of
0.20 was chosen as the inclusion criterion for selecting explan-
atory variables for the multivariate analysis because Hosmer
and Lemeshow (1989) indicate that a traditional alpha level of
0.10 failed to identify variables known to be important during
some logistic regression analyses. The number of explanatory
variables selected for multivariate analyses varied according
to study area: 30 out of 40 variables statewide, 32 out of 40
variables for the glacial aquifer system, 23 out of 38 vari-
ables for the Gettysburg Basin, and 20 out of 40 variables for
the Newark Basin. Coefficients from the final statewide and
regional multivariate logistic regression models were used to
construct maps illustrating the probability of arsenic concen-
trations equaling or exceeding 4.0 pg/L in groundwater in
Pennsylvania and in selected regions within the State.
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Statewide

The results of the final statewide model are summarized
in table 5 and show the overall fit for the statewide model is
statistically significant with a Wald Chi-Square probability
value of less than 0.0001. Explanatory variables included in
the statewide model are the siliciclastic major aquifer type
(SIL), surficial major aquifer type (SURF), estimated ground-
water specific conductance (SPCIDW), estimated groundwa-
ter pH (PHIDW), and average soil available water capacity
(AWCAVE). The standardized regression coefficient (table 5)
allows for comparisons among variables in the model in
common units where units differed among variables (Menard,
2002). This statistic showed that presence or absence of the
siliciclastic and surficial major aquifer types were the most
significant variables in the model. SIL, SURF, SPCIDW, and
PHIDW showed positive correlations with elevated arsenic
concentrations. When the siliciclastic or surficial aquifer types
are present, arsenic concentrations increase, which illustrates
the potential of primarily siliciclastic and surficial geologic
units to affect elevated arsenic concentrations. The positive
correlation between elevated arsenic concentrations and the
SPCIDW and PHIDW variables describes how groundwater
geochemistry can be an indicator of elevated arsenic con-
centrations in groundwater. Also, the positive correlation
between elevated arsenic concentrations and the SPCIDW and
PHIDW variables illustrates how groundwater geochemical
properties, such as groundwater specific conductance and pH,
can increase the potential for arsenic mobilization, which is
consistent with other studies where increased pH was shown
to mobilize arsenic (Ayotte and others, 2006). Increases in pH
can occur due to ion exchange with sodium, and high specific
conductance in groundwater may indicate high amounts of
salt (Schlottmann and others, 1998). The only variable with
a negative relation with elevated arsenic concentrations was
AWCAVE (appendix 3 and table 5), indicating that if a soil
has the capability of storing smaller amounts of water, the
potential for elevated arsenic concentrations in groundwa-
ter increases. This relation suggests that the probability of
elevated arsenic concentrations increases beneath sandy and
loamy soils, which are more prone to leaching and may show
how soils that poorly store water may serve as pathways for
arsenic to enter groundwater (U.S. Department of Agriculture,
2008). This is a problem especially if arsenic is present on the
land surface from contaminated soils (such as from land appli-
cation of pesticides, mining and ore processing operations, or
waste disposal) or mineral deposits because arsenic is more
prone to leach from these soils into groundwater. Therefore,
groundwater vulnerability to elevated arsenic concentrations
in Pennsylvania may be characterized as a function of aquifer
type and its associated groundwater geochemistry parameters
(pH and specific conductance), along with the ability of over-
lying soils to store water.

Overall model fit is good with an H-L p-value of 0.2751
(p-values greater than 0.05 indicate good model fit). The gen-
eralized r-square value was 0.0709, and the maximum-rescaled

r-square value was 0.1161. Percent concordance was

69.2 percent, and model sensitivity was 22.1. Model discrimi-
nation was acceptable, as indicated by a c statistic of 0.695.
Diagnostic statistics indicated a lack of multicollinearity for all
explanatory variables for the statewide model. Multicollinear-
ity diagnostic statistics indicate no detection of multicollinear-
ity among model variables. Tolerance values were greater than
0.4 and VIF values were less than 2.5.

Linear regressions between the actual probability of
elevated arsenic concentrations and the average predicted
probabilities were constructed according to 10 percent deciles
calculated with the statewide model calibration data. The
results of the regression confirm good model calibration state-
wide in Pennsylvania, with an r-square of 0.9647 (fig. 4).

Spatial distribution of predicted probabilities of elevated
arsenic concentrations resulting from the statewide model var-
ies across the State and is expressed as a percent probability
on a map (fig. 5). The map shows the predicted probability of
elevated arsenic in groundwater for both surficial and bedrock
aquifers, which may differ in some areas of the State but are
not differentiated in figure 5. Probabilities of elevated arsenic
concentrations of 20 to 50 percent are more widespread in
those parts of the State underlain by siliciclastic and surficial
aquifers, which also have the highest potential to act as an
arsenic source or mobilizer. Areas with less than 20 percent
predicted probability of elevated arsenic concentrations, such
as the southwestern part of the State, have soils with high
percentages of available water capacity, which can also be
indicative of other geologic factors because soil development
is related to underlying bedrock lithology, except in glaci-
ated areas. Within units having siliciclastic or surficial major
aquifers, high predicted probabilities (greater than 30 percent)
of elevated arsenic concentrations are most prominent in areas
with high groundwater specific conductance and pH.

The Pearson residual statistic was calculated for each
well to determine which observations were most poorly fit by
the model and to spatially show the model’s predictive error.
This statistic calculates the difference between observed and
estimated probabilities and divides the result by the binomial
standard deviation of the estimated probability (Menard,
2002). Resulting Pearson residuals have a mean equal to 0 and
a standard deviation equal to 1. For the 5,009 wells, Pearson
residual values include 347 values greater than 2.0 and 3 val-
ues less than -2.0. Large positive values account for 7 percent
of the dataset, whereas large negative values account for less
than 1 percent of the dataset. Spatial locations of Pearson
residual values associated with outliers indicate areas where
the model is not entirely correct and does not fit the dependent
data (fig. 5). The northeastern and north-central parts of the
State have the fewest poor predictions, whereas the southeast-
ern part of the State has a large cluster of poor predictions.
Some poor predictions are spread through the northwestern
tier and central parts of the State. These poor predictions
can be attributed to the uneven spatial distribution of arsenic
in rock and associated groundwater and the inability of the
variables in the model to completely capture the diversity of
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Figure 4. Percentage of observed detections of elevated arsenic concentrations in relation to the average predicted probability of
detecting elevated arsenic concentrations in groundwater statewide and in three regions in Pennsylvania.

the geologic, soil, and geochemical properties controlling
arsenic in the State; additional variables or separate models for
regions would be needed to seamlessly characterize elevated
concentrations of arsenic across the entirety of Pennsylvania.

Glacial Aquifer System

The results of the glacial aquifer system model, which
includes the late Wisconsinian glacial border (Pennsylvania
Geological Survey, 1995) and areas in the northern half of
Pennsylvania that are overlain by surficial material consist-
ing of coarse-grained sediments (Soller and Packard, 1998)
(fig. 2), are summarized in table 5. The overall fit for the
model is statistically significant with a Wald Chi-Square prob-
ability value of 0.0004. Explanatory variables included in the
glacial aquifer system model are average soil bulk density
(BDAVE), average wetlands land cover within a 500-meter
radius (WETAVE), specific conductance in groundwater
estimated using only glacial data (SPCIDWGLAC), average
soil permeability (PERMAVE), and groundwater pH esti-
mated using only glacial data (PHIDWGLAC). Results of the
standardized regression show that average soil bulk density

is the most significant variable in the model, and all variables
showed positive correlations with elevated arsenic concen-
trations. High soil bulk density is related to a greater degree
of soil compaction and may be an indicator of sandy soils
because total pore space in sandy soils commonly is less than
total pore space in clay or silt (U.S. Department of Agricul-
ture, 2008). Arsenic concentrations increase as average soil
permeability increases ( appendix 3 and table 5), which indi-
cates that areas of sandy soils with high permeability estimates
tend to have higher concentrations of arsenic in groundwater
than areas with other soil types. Areas in the glacial aqui-

fer system with sandy or coarse-grained deposits are typi-
cally associated with glacial valley-fill deposits that overlay
fine-grained deposits of till or clay in some places; sediment
texture typically is not uniform with depth in glaciated regions
(Thomas, 2007). The sandy soils may also exist as a thin
veneer that overlies fine-grained till or clay deposits that form
the valley walls and (or) terraces. Extensive clay deposits
(glacial lake sediments) are found in many glacial valleys and
where surface depressions exist the clay deposits encompass
wetlands such as peat bogs. Average wetlands land cover
within a 500-meter radius (WETAVE) has the second highest
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standardized coefficient in the model, which means that the
greater the percentage of wetlands within a 500-meter radius,
the higher the probability of an elevated arsenic concentration
in groundwater. Because many of the glacial valley-fill depos-
its identified by the bulk density and permeability of soils are
overlain by wetlands, underlying till or clay may be creating a
confining layer close to the land surface. This finding suggests
that arsenic is being mobilized in these areas in part because
of the confining layers that create the wetlands in the glacial
valleys. Wetlands, which relate to low dissolved oxygen and
redox, could be the result of the upward flow of groundwater.
These poorly drained areas can lead to high pH and arsenic
desorption. The positive correlation between elevated arsenic
concentrations and SPCIDWGLAC and PHIDWGLAC vari-
ables describes groundwater geochemistry as an indicator of
elevated arsenic concentrations in groundwater in the glacial
aquifer system. Increases in pH can cause arsenic to become
mobilized in water. Increases in specific conductance indicate
older, less oxic water, which can result in the mobilization of
arsenic. In inundated areas such as wetlands, groundwater is
anoxic and organic rich, and flow is restricted, which allows
arsenic to be released. The glacial aquifer system model
illustrates that groundwater geochemical properties, such

as high groundwater specific conductance and pH, may be
acting as geochemical triggers and releasing arsenic from the
aquifer matrix to the groundwater in the glacial aquifer system
(Thomas, 2007).

Model fit was very good with an H-L p-value of 0.4477.
The glacial aquifer system model had a generalized r-square
value of 0.2314 with a maximum-rescaled r-square value of
0.3297. According to the percent concordant, 77.8 percent
of responses were correctly predicted, and the sensitivity
value was 55.6. Model discrimination was acceptable with a
c statistic of 0.780. Diagnostic statistics indicated a lack of
multicollinearity for all explanatory variables because the
lowest Tolerance value was 0.76741 (greater than 0.4), and the
highest VIF value was 1.30309 (less than 2.5).

Linear regressions between the actual probability of
elevated arsenic concentrations and the average predicted
probabilities were constructed according to 10 percent deciles
calculated with the glacial aquifer system model calibration
data. Regression results confirm good model calibration with
an r-square of 0.9487 (fig. 4).

Predicted probabilities of elevated arsenic concentrations
produced by the glacial aquifer system model were calculated
using arsenic concentration data that were known to repre-
sent the glacial units in order to create a model distinguishing
between the glacial units and the underlying bedrock. Pre-
dicted probabilities for the glacial aquifer system model have
a different spatial distribution than probabilities of elevated
arsenic resulting from the statewide model that represents
underlying bedrock (figs. 5-6). The predicted probabilities of
elevated arsenic in groundwater are much greater in the north-
western than in the northeastern glacial tier. High predicted
probabilities (greater than 50 percent) of elevated arsenic con-
centrations are most prominent in areas with high estimated

groundwater specific conductance and pH, which were calcu-
lated only for those wells finished in the glacial aquifer sys-
tem. These areas are located along Lake Erie in the northwest-
ern glacial tier and in areas with glacial valley-fill deposits that
correspond to high percentages of wetlands. Probabilities of
elevated arsenic concentrations of 20 to 50 percent are more
widespread in those areas with high average soil bulk density
and high soil permeability; most of these areas are located in
the northwestern glacial tier. Areas with the lowest estimated
specific conductance and pH, such as the northeastern glacial
tier, have less than 20 percent predicted probability of elevated
arsenic concentrations.

The Pearson residual statistic was calculated for each
well and plotted on a map to determine which observations
and spatial areas were most poorly fit by the model and to spa-
tially show the model’s predictive error. Results indicate Pear-
son residuals have a mean equal to 0 and standard deviation
equal to 1. For the 307 wells, Pearson residual values include
16 values greater than 2.0 and two values less than -2.0. Large
positive values account for 5 percent of the dataset, whereas
large negative values account for less than 1 percent of the
dataset. Spatial locations of Pearson residual outliers appear to
be randomly distributed throughout the region (fig. 6).

Gettysburg Basin

Results for the Gettysburg Basin model, which represents
south-central Pennsylvania, show the overall model fit is sta-
tistically significant with a Wald Chi-Square probability value
0f 0.0056 (table 5). Explanatory variables in the model include
average soil sand content (SANDAVE), land-surface elevation
above sea level (NAVD 88) (ELEV), distance to toxic chemi-
cal release inventory sites (TRI), average estimated groundwa-
ter pH (PHIDW), and estimated groundwater specific conduc-
tance (SPCIDW). Standardized regression coefficients show
that average soil sand content is the most significant variable
in the model. SANDAVE, PHIDW, and SPCIDW were posi-
tively correlated with elevated arsenic concentrations, whereas
ELEV and TRI were negatively correlated. As average soil
sand content increases, arsenic concentrations also increase,
and as land-surface clevation above NAVD 88 decreases,
arsenic concentrations increase. Soils with high sand content
seem to be found mostly in the parts of the region with lower
land-surface elevations, which seems to correspond to hornfels
bordering diabase intrusions with associated mineral deposits
of hydrothermal origin, which Senior and Sloto (2006) also
found to have locally elevated arsenic concentrations. Sandy
soils and low land-surface elevations may be indicators of
the underlying geologic environment acting as an arsenic
source or mobilizer, causing elevated arsenic concentrations
in groundwater within the Gettysburg Basin. The positive cor-
relation between elevated arsenic concentrations and SPCIDW
and PHIDW variables indicate groundwater geochemistry
conditions that facilitate arsenic mobilization in groundwater.
Geochemical conditions may be further mobilizing arsenic
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from aquifer materials because high predicted probabilities

of elevated arsenic in groundwater also correspond to high
estimated groundwater specific conductance and pH. This
finding is consistent with the results of the study by Senior and
Sloto (2006) in the Newark Basin. With decreased distances to
toxic chemical release inventory sites, arsenic concentrations
increase. This relation indicates elevated arsenic concentra-
tions occur close to facilities that have been known to release
toxic chemicals directly to air, water, or land. These facility
locations represent anthropogenic contamination sites that
could have released chemicals containing arsenic or chemicals
containing constituents that affect redox environment or pH
and, hence, promote arsenic mobilization. Senior and Sloto
(2006) also noted elevated arsenic concentrations in ground-
water near a few contamination sites but did not directly
attribute elevated arsenic concentrations in groundwater to
contaminant sources. The Gettysburg Basin model illustrates
that predictions of elevated arsenic concentrations in ground-
water can be refined by considering soils prone to leaching,
proximity to contaminated sites, and topography in conjunc-
tion with previously associated groundwater geochemical
properties (pH, redox, specific conductance).

An H-L p-value of 0.9244 indicates that model fit was
very good. The generalized r-square value was 0.2428, and
the maximum-rescaled r-square value was 0.3655. These were
the highest r-square values for any of the models, indicating
that these data fit the Gettysburg Basin model better than data
for the other models fit those models. The percent concordant
value indicates that 83.3 percent of responses were correctly
predicted, and model sensitivity was 65.9. Model discrimina-
tion was excellent with a c statistic of 0.833. No multicol-
linearity was detected among model variables because the
lowest Tolerance value was greater than 0.4 and the highest
VIF value was less than 2.5. Linear regressions between the
percentage of observed detections of elevated arsenic concen-
trations and the average predicted probabilities confirm good
model calibration, with an r-square of 0.9820 (fig. 4).

Elevated arsenic concentration predicted probabilities
resulting from the Gettysburg Basin model (fig. 7) were higher
for the southern part of the region than the probabilities that
resulted from the statewide model (fig. 5). Predicted probabili-
ties of elevated arsenic concentrations greater than 50 percent
are focused in areas with high sand soil content and low
land-surface elevation; many of these areas are located along
the southern boundary of the region. Probabilities of elevated
arsenic concentrations between 20 to 50 percent surround
the areas that represent probabilities greater than 50 percent,
which is mainly attributed to the 122 toxic chemical release
inventory sites within the basin because as distances to these
sites decrease, predicted probabilities of elevated arsenic
concentrations increase. Areas that have under 20 percent
predicted probability of elevated arsenic concentrations largely
correspond to those parts of the region with the lowest esti-
mated groundwater specific conductance and pH.

Results for the Pearson residual statistic include a
mean equal to 0 and a standard deviation equal to 1. For the

174 wells, Pearson residual values include 8 values greater
than 2.0 and 0 values less than -2.0; large positive values
account for 5 percent of the dataset. The spatial locations for
the eight Pearson residual values associated with outliers are
randomly spread throughout the region (fig. 7).

Newark Basin

The Newark Basin model results, which represent part of
southeastern Pennsylvania northeast of the Gettysburg Basin,
have geologic variables that are similar to the Gettysburg
Basin, which means that these two models have similar model
variables. These two areas were considered separately for
this study because the Newark Basin has often been consid-
ered separately for other studies and has similar but different
geology (Peters and Burkert, 2008; Senior and Sloto, 2006).
The Newark Basin has an overall model fit that is statisti-
cally significant with a Wald Chi-Square probability value of
0.0143 (table 5). Explanatory variables for the Newark Basin
model include estimated groundwater pH (PHIDW), estimated
groundwater specific conductance (SPCIDW), distance to
municipalities containing water suppliers receiving arsenic
treatment and sites or groundwater in need of remediation
because of arsenic contamination (MUN), and average soil
available water capacity (AWCAVE). Standardized regres-
sion coefficients show that estimated groundwater pH was the
most significant variable in the model. PHIDW and SPCIDW
had positive correlations with elevated arsenic concentra-
tions, whereas MUN and AWCAVE had negative correlations
(table 5). Correlations between arsenic and PHIDW, SPCIDW,
and AWCAVE indicate relations are similar to those for the
statewide and Gettysburg Basin models. High specific conduc-
tance and pH in groundwater are more than likely providing a
geochemical environment that facilitates the mobilization of
arsenic from mineral deposits bordering diabase intrusions.
Senior and Sloto (2006) found in their study of the Newark
Basin that wells completed near diabase in the hornfels com-
monly had elevated groundwater concentrations of arsenic
and that areas with pH of 8 or greater were associated with a
geochemical environment favorable for arsenic mobilization.
Also, the lowest predicted probabilities of arsenic correspond
to those parts of the region with the highest soil available
water capacity, which are underlain by the diabase intrusions.
The MUN variable was not part of the statewide model; it
represents areas with known arsenic contamination in ground-
water and soils. The MUN variable’s negative correlation with
arsenic shows that arsenic concentrations increase as distance
to municipalities with treatment decreases. These munici-
palities not only represent areas containing geochemical and
geologic properties favorable for arsenic mobilization, but
they also contain sites that may have been affected by anthro-
pogenic contamination. As with the toxic chemical release
inventory sites, it is possible for contaminants, such as arsenic,
to enter soils and groundwater from these sites that are in need
of remediation. As with the Gettysburg Basin, results of the
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Newark Basin model illustrate that geochemical properties of
groundwater, soils properties, and proximity to areas contain-
ing water suppliers with arsenic treatment or sites in need of
remediation because of arsenic contamination describe an
environment favorable for arsenic mobilization.

Overall model fit was very good, indicated by an H-L
p-value of 0.5738. The generalized r-square value was 0.1331,
and the maximum-rescaled r-square value was 0.1860. The
percent concordant value indicates that 72.7 percent of
responses were correctly predicted, and model sensitivity was
74.1. A c statistic of 0.729 shows acceptable model discrimi-
nation. Diagnostic statistics indicate a lack of multicollinear-
ity for all explanatory variables for the Newark Basin model.
Because the lowest Tolerance value was 0.87983 (all values
are greater than 0.4) and the highest VIF value was 1.13659
(all values were less than 2.5), these multicollinearity diagnos-
tic statistics indicate that there is no multicollinearity among
model variables. Linear regressions between the percentage of
observed detections of elevated arsenic concentrations and the
average predicted probabilities confirm good model calibra-
tion, with an r-square of 0.9295 (fig. 4).

Predicted probabilities of elevated arsenic concentrations
resulting from the Newark Basin model (fig. 8) are higher
than those probabilities that resulted from the statewide model
(fig. 5). Predicted probabilities of elevated arsenic concentra-
tions greater than 30 percent are distributed mainly in the
central and northern parts of the region and correspond to high
estimated groundwater specific conductance and pH and to
proximity to municipalities containing water suppliers with
arsenic treatment and sites or groundwater in need of remedia-
tion because of arsenic contamination. Predicted probabilities
less than 30 percent primarily correspond to high percentages
of soil available water capacity. These areas are located in the
southeastern part of the Newark Basin and in the northern part
of the basin where they correspond to diabase intrusions.

Pearson residual results show a mean equal to 0 and stan-
dard deviation equal to 1. For the 455 wells, Pearson residual
values include 0 values less than -2.0 and 14 values greater
than 2.0; large positive values account for 3 percent of the
dataset. Spatial locations of Pearson residual values associated
with outliers indicate that most poor predictions are located in
the southeastern part of the region (fig. 8).

Limitations and Uses of Arsenic
Models and Probability Maps

Probability maps developed for this study show the
predicted probability of arsenic concentrations greater than or
equal to 4.0 ug/L in groundwater in Pennsylvania and three
regions within the State, including the glacial aquifer system,
the Gettysburg Basin, and the Newark Basin (figs. 5-8). The
probability maps do not show actual arsenic contamination
of groundwater but rather depict areas that have the potential
or likelihood of having groundwater with elevated arsenic

concentrations. There is inherent uncertainty associated with
each of the maps, which stems from data quality and availabil-
ity in the well database and GIS-based explanatory variables
and the estimation errors in the logistic regression coefficients.

Certain areas of the predictive maps may have elevated
arsenic that are not characterized by the statewide or regional
models and are indicated by areas with many Pearson residu-
als indicating poor predictions (values less than -2.0 and
greater than 2.0). These areas have greater uncertainty associ-
ated with their relative predicted probabilities. The occurrence
of Pearson residuals representing poor predictions resulting
from the statewide and regional models supports the con-
cept that regional models across the entire State or regional
models encompassing smaller regions than those analyzed in
this study may be needed to improve predicted probabilities.
Higher resolution spatial data and additional data on arsenic
concentrations in groundwater and associated variables would
improve the predictive power of the models. Further study and
additional independent data are also needed to validate the
results of each logistic regression model.

In addition, regional differences in numerous factors,
such as lithology and geochemical controls, affecting arsenic
mobility are not accounted for in the statewide model and
may reduce the predictive power of the statewide model.

For example, the major aquifer type variable present in the
statewide analysis is a broad characterization of dominant
lithologies and may mask localized mineralogical differences
in geologic units within the major aquifers. An example of a
geochemical control not accounted for can be seen in table 4
where it shows how elevated concentrations of arsenic tend
to occur at low pH (less than 4.0) and high pH (greater than
or equal to 8.0), but the statewide Spearman’s rho correlation
indicates a positive correlation between arsenic concentra-
tions and pH values. This positive correlation between arsenic
concentrations and pH values masks the relation of elevated
arsenic concentrations to low pH, which may occur in fewer
places statewide but still results in arsenic concentrations of
concern. Differences in variables that were significant among
statewide and regional models also illustrate factors that are
not able to be accounted for in the statewide model. It is likely
that the regional models for geologic units and major aquifers
in other physiographic provinces, such as the Appalachian
Plateaus, Atlantic Coastal Plain, Piedmont Uplands, or Ridge
and Valley, that were not separately analyzed for this study,
would also differ and provide better predictive ability in those
regions than the statewide model.

By providing an improved understanding of spatial
controls on arsenic statewide and in three regions in Pennsyl-
vania, the probability maps developed for this report may help
resource managers to prioritize areas for groundwater-quality
monitoring or implement alternative management practices.
However, the probability maps associated with this report are
intended for regional-scale use and have limitations for use
at the field-scale or when considering individual wells. The
maps are not appropriate at any scale larger than 1:250,000,
which is the smallest scale of any of the explanatory variables
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used in the models. The threshold accuracy value for a scale of
1:250,000, as established by National Map Accuracy Stan-
dards, is 127 meters (417 feet) in ground units. Concentrations
of arsenic in groundwater and in a well are affected by many
field-scale complexities that are not accounted for in the mod-
els. For example, the models do not account for preferential
groundwater flow paths in bedrock units. As a result, although
a well may be located in a region with a high predicted prob-
ability of elevated arsenic, the well may yield water with

low arsenic concentrations as a result of complexities that
cannot be represented in the regional-scale models that were
developed for this study. Therefore, the models and maps are
not appropriate for predicting the risk of elevated arsenic in
individual wells.

In addition to the explanatory variables included in each
of the four models, there may be other explanatory variables
that can affect concentrations of arsenic in groundwater.

For example, the regional models do not take geology into
account, which means that these regions need to be studied

in greater detail. Also, exclusion of an explanatory variable
from the model does not mean that the variable does not affect
concentrations of arsenic. For example, data on dissolved
oxygen concentrations could have been used to define the
redox environment, but sufficient data were not available to
create a dissolved oxygen dataset for use in the analysis. In
addition, for two or more explanatory variables that exhibit
strong correlations with one another, all of these variables
were not included in the same model because including one
variable usually accounts for the effects of the other correlated
variables. For example, soil available water capacity and soil
thickness have a strong positive correlation, so only one of
the variables was included. Additionally, characterization of
lithologies other than by the selected major aquifer types may
result in different correlations between elevated arsenic con-
centrations in groundwater and geologic units. Some geologic
units from each major aquifer type may be more likely than
other geologic units to have elevated arsenic concentrations,
and so the more subtle differences in mineralogy of these units
that affects arsenic occurrence and mobility are not captured in
the models.

Summary and Conclusions

Data on arsenic concentrations in groundwater were
available for 5,023 wells—monitoring, domestic, public
supply, commercial, irrigation, and industrial wells—across
Pennsylvania. Arsenic was detected at a concentration of
4.0 micrograms per liter (ug/L) or greater in 18 percent of
samples. Arsenic concentrations that met or exceeded the
U.S. Environmental Protection Agency maximum contami-
nant level of 10.0 pg/L were measured in about 8 percent of
samples; the highest arsenic concentration was 490.0 pg/L.

Comparison of arsenic concentrations in groundwater
by physiographic province indicates that the Central Lowland
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province in northwestern Pennsylvania has the highest median
arsenic concentration (4.5 pug/L) and highest percentage of
sample records with arsenic concentrations greater than or
equal to 4.0 ug/L (59 percent) and greater than or equal to
10.0 png/L (43 percent). Evaluation of arsenic concentrations
in groundwater of four major aquifer types in Pennsylvania
(carbonate, crystalline, siliciclastic, and surficial) showed that
all aquifer types have median arsenic concentrations less than
4.0 pg/L, and the highest arsenic concentration (490.0 pg/L)
was in a siliciclastic aquifer. The siliciclastic and surficial
aquifers have the highest percentage of sample records with
arsenic concentrations greater than or equal to 4.0 ug/L and
10.0 pg/L. Elevated arsenic concentrations, which are those
arsenic concentrations greater than or equal to 4.0 pg/L, were
most commonly found in strongly reducing groundwater state-
wide. Arsenic concentrations were elevated in 10 percent of
oxic waters, whereas 20 percent of anoxic waters had elevated
arsenic concentrations. Also, for a given pH range, samples
classified as anoxic reductive-oxidative (redox) water more
typically had elevated arsenic concentrations than samples
classified as oxic or mixed. The relatively large percentage of
anoxic and high pH waters with elevated concentrations of
arsenic indicates that mechanisms such as reductive desorp-
tion or dissolution are occurring, releasing arsenic from iron
oxides. However, elevated arsenic concentrations were also
found in reducing waters with low pH, indicating that other
mechanisms, such as reductive dissolution of iron oxides, also
may result in mobilization of arsenic in groundwater.

Arsenic concentrations were correlated with concentra-
tions of several chemical constituents, including (1) con-
stituents linked to redox processes (specific conductance,
alkalinity, iron, pH, total organic carbon, dissolved oxygen,
and nitrate plus nitrite (as N)), (2) constituents that may be
mobilized under chemical conditions similar to those that
mobilize arsenic (cobalt, strontium, nickel, sodium, barium,
aluminum, and calcium), and (3) anions or oxyanions that sorb
to iron oxides (silica and sulfate).

Logistic regression was used to develop spatial statisti-
cal models predicting the probability of detecting arsenic
concentrations greater than or equal to 4.0 pg/L in ground-
water statewide and in three intrastate regions. Although, the
statewide and regional (glacial aquifer system, Gettysburg
Basin, and Newark Basin) models consisted of slightly differ-
ent variables, the results have common characteristics that can
be grouped as (1) geologic and soils variables that describe
arsenic sources and mobilizers (major aquifer types, soil
available water capacity, soil bulk density, soil permeability,
and soil sand content), (2) geochemical variables that describe
the geochemical environment of the groundwater (specific
conductance and pH), and (3) locally specific variables that are
unique to each of the three regions studied and are not appli-
cable to the statewide analysis (wetlands land cover, land-sur-
face elevations above the North American Vertical Datum of
1988 (NAVD 88), distance to toxic chemical release inventory
sites, and distance to municipalities containing water suppli-
ers with arsenic treatment and sites or groundwater in need of
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remediation because of arsenic contamination). These models
have limitations because they may not characterize areas that
have different controls on arsenic mobility and should not be
used to estimate probabilities of elevated arsenic in groundwa-
ter at the field-scale or when considering individual wells.

The occurrence of arsenic in groundwater of Pennsyl-
vania is largely the result of mobilization of arsenic from
natural sources in the aquifer and the geochemical conditions
of groundwater. For this investigation, the potential for natural
geologic features to be sources of arsenic was established on
the basis of selected geologic characteristics (primary lithol-
ogy to determine major aquifer type). Also, the data reviewed
for this investigation indicate that variations in arsenic concen-
trations in Pennsylvania groundwater generally are related to
variations in redox conditions, pH, and specific conductance
at State and regional scales. As demonstrated in this report,
these groundwater-quality variables, which affect the release,
transport, and attenuation of arsenic in the aquifer, may be
considered in conjunction with siliciclastic and surficial major
aquifer types to indicate geologic conditions where ground-
water may contain elevated arsenic. Health officials may
consider testing or advising homeowners in geologic settings
within siliciclastic or surficial major aquifer types to test their
groundwater for arsenic, particularly if other available data,
such as proximity to known areas of elevated arsenic or arse-
nic contaminant release sites or geochemical conditions (low
redox, high pH, high specific conductance) indicate a geo-
chemical environment that favors the mobilization of arsenic.
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Appendixes 1,2, and 3

Appendix 1. Summary of statewide and regional anthropogenic and natural factors used as explanatory variables in logistic
regression models for elevated arsenic concentrations in groundwater in Pennsylvania and number of sample records.

Appendix 2. Summary of arsenic concentrations in groundwater (1969-2007) for the 193 geologic units in Pennsylvania
with major aquifer type and primary lithology.

Appendix 3. Results of univariate logistic regression analyses with logistic regression standardized coefficients and indi-
vidual p-values of independent variables related to the detection of elevated concentrations of arsenic in groundwater samples
collected statewide and in three regions in Pennsylvania.
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